首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This project was designed to determine the effect of fertilizer rate and irrigation scheduling on water use, nutrient leaching, and fruit yield of young avocado trees (Persea americana Mill. cv. Simmonds). Seven nutrient and irrigation management practices were evaluated: (1) irrigation based on crop evapotranspiration (ET) with 50% fertilizer at a standard rate (FSR); (2) ET irrigation with FSR (typical for avocado production in the area); (3) ET irrigation with 200% FSR; (4) irrigation based on exceedance of 15-kPa (SW) soil water suction with 50% FSR; (5) SW with FSR; (6) SW with 200% FSR; and (7) irrigation at a set schedule (based on timing and frequency typically used in local avocado production) with FSR. The SW with FSR treatment saved 87% of the water volume applied and reduced total phosphorus leached by 74% compared to the set schedule irrigation with FSR. The SW with FSR treatment had higher avocado fruit production, tree water-use efficiency, and fertilizer-use efficiency than the other six treatments. Thus, the use of soil water monitoring for irrigation management can substantially increase sustainability of young avocado orchards in southern Florida.  相似文献   

2.
循环曝气地下滴灌下温室番茄生长特性与产量研究   总被引:1,自引:0,他引:1  
为探讨循环曝气地下滴灌不同肥气耦合处理对作物生长、光合特性及产量的影响规律,以番茄(京鲁6335)为研究对象,利用循环曝气装置实现水肥气一体化灌溉,设置4个曝气量(高曝气O1,中曝气O2,低曝气O3,不曝气S,掺气比例分别为16.25%、14.58%、11.79%和0),3个施肥量(高肥F1,中肥F2,低肥F3),采用...  相似文献   

3.
This study was conducted to determine the optimum irrigation water amounts for muskmelon (Cucumis melo L.) in plastic greenhouse. The irrigation water amounts were determined based on the percentage of field water capacity. On the same basis of irrigation start-point of 60% (the percent to comparing to the field water capacity), there were four different irrigation water levels 100% (T100), 90% (T90), 80% (T80) and 70% (T70) as the four different treatments. The results showed that plant growth, fruit production and quality were significantly affected under different irrigation water amounts. Plant height and stem diameter decreased as well as fruit yield from treatment T100 to T70. Fruit quality was the best in the T90 treatment. The irrigation water use efficiency (IWUE) values found in this experiment showed that the lower the amount of irrigation water applied, the higher the irrigation water use efficiency obtained.Hence, based on the quality and quantity of muskmelon yield, the regime for 90% of field water capacity is the suitable soil irrigation treatment (T90) which can save irrigation water and improve the quality of fruit. Combined the crop yield, quality and pan evaporation inside greenhouse, obtained Kcp = 1.00 values can be recommended for the most appropriate irrigation scheduling, irrigation water amount is better between T100 and T90. Therefore, applying water by drip irrigation in relation to the amount of water evaporated from a standard 0.2 m diameter pan is a convenient, simple, easy, and low cost method inside a plastic greenhouse.  相似文献   

4.
为了了解营养液不同供液量和供液频率对辣椒生长发育、果实品质和水分利用效率的影响,以“洋大帅”为试验材料,采用基质槽培的栽培方式进行试验.试验设置了3个不同供液量(在苗期,每株辣椒每天的供液量分别为W1:300 mL,W2:400 mL,W3:500 mL,开花坐果期每株辣椒每天的供液量加倍,结果期每天的供液量是苗期的3倍)和3个不同供液频率(整个生育期,每天的供液频率维持不变,即T1:2次/d,T2:3次/d,T3:4次/d).结果表明:当供液量为W2时,地上部分与地下部分相关性最好;处理W1T2水分利用效率最高,为18.13 kg/m3,但是其产量最低;处理W3T1的总根表面积最大,为754.54 cm3;处理W3T2辣椒生长最好,有最大的株高和茎粗,果实品质与水分利用效率也相对较好.因此,处理W3T2为试验条件下基质培冬春茬辣椒最佳的供液量和供液频率.  相似文献   

5.
针对干旱沙区水资源短缺、水分利用效率较低、“白色污染”等问题,在内蒙古乌兰布和沙区开展了2 a的可降解地膜膜下滴灌田间试验.试验设置2种类型的地膜覆盖(可降解地膜和普通地膜)与3个灌溉定额(低水、中水和高水)共6个处理,研究了可降解地膜覆盖下不同灌水处理对干旱沙区玉米生长、产量、土壤含水率、耗水量及水分利用效率WUE的影响.结果表明:可降解地膜覆盖下的玉米生长和产量与普通地膜覆盖的差异不具有统计学意义,抽雄期后耗水量较大,而WUE显著降低;可降解地膜覆盖下灌水量对玉米生长、产量、土壤含水率、耗水量及WUE有显著的影响,灌水量增加会促进玉米生长,延缓后期玉米衰老,增加玉米产量,2 a均为高水处理的产量最大,分别为13 614.97,13 726.68 kg/hm2,且与中水处理的差异不具有统计学意义;耗水量随灌水量增加呈上升趋势,而WUE随灌水量增加呈抛物线趋势,2 a中水处理的WUE均为最大,平均分别比高水、低水处理的高2.77%,19.56%.  相似文献   

6.
不同灌溉处理对玉米生长及水分利用效率的影响   总被引:4,自引:1,他引:4  
通过温室试验,研究了不同灌溉处理对玉米的生长状况,生理特性及产量和水分利用率的影响。结果表明,充分灌溉处理(FI)的植株株高、茎粗与叶面积长势优于其它处理,而地上部分及根系的干物质累积量低于其它处理。相同的灌溉量条件下,分根交替灌溉处理(PRD)的植株产生的脯氨酸含量高于调亏灌溉处理(DI),说明PRD处理能够使植株提高渗透调节能力。在产量构成中,FI处理的植株产量最高,PRD 75%(灌水量为充分灌溉的75%)处理的植株产量略低于FI处理,二者差异不显著,其次为D I75%处理(灌水量为充分灌溉的75%)。尽管FI处理的植株绝对产量最高,但是以牺牲水分利用率为代价的,而其它处理尽管绝对产量较FI处理略低,但由于其耗水量也低,水分利用率反而高于FI处理。特别是PRD 75%处理的植株绝对产量和水分利用率都有较好的表现。  相似文献   

7.
不同水盐胁迫对番茄生长发育和产量的影响研究   总被引:1,自引:1,他引:0  
【目的】探究番茄植株对不同水盐胁迫情景的响应,为合理制定盐碱化土壤下的灌溉制度提供科学依据。【方法】以粉欧宝番茄品种为研究对象,开展水盐对番茄生长发育影响的盆栽试验。试验采用完全随机布置,设置3个水分水平(W1-充分灌溉、W2-1/2的W1灌水量、W3-干旱复水)和2个盐分水平(S1-无盐和S2-0.3%含盐量),每个处理4个重复,测定了番茄耗水、干物质和产量指标,分析了不同水盐胁迫对番茄植株生长发育与产量的影响。【结果】与充分灌溉W1相比,W2水平的番茄植株耗水、干物质、植株含水率、叶质量、产量、单果质量显著减少。W3水平的植株耗水量和叶茎比显著减少,但单株干质量与鲜干比所受影响不大;单果鲜质量与干质量显著减小,但坐果率提高导致产量有所增加。盐分处理的番茄植株耗水量、单株干质量、鲜干比、叶茎比、果实总产量、单果鲜质量与干质量均小于无盐处理。水分胁迫显著影响叶片生长和单个果实发育,盐分胁迫抑制植株的生长发育及产量形成。【结论】干旱复水与无盐处理组合(W3S1)下番茄植株表现出了较好的生长发育状况和产量水平,可用于最优调亏灌溉制度的制定。  相似文献   

8.
针对水资源短缺且用水浪费的问题,本研究设置4个灌水量和2个灌水频率,4个灌水量按生育期进行调整,完全随机设计试验,旨在研究不同灌水量和灌水频率对番茄植株生长、荧光和光合参数的影响。研究结果表明:番茄株高、茎粗、光合参数以及荧光参数Fo、Fm、Fv等和均随着灌水量的增加呈增加的变化趋势,其中株高、茎粗和叶绿素随着频率的增加也增加,苗期L1P1的NPQ显著高于L2P2 17.6%;而荧光参数Fv/Fm苗期和开花坐果期时随着灌水量的增加呈先上升后下降的变化趋势,盛果期上升后无下降趋势,开花坐果期时L3P2比L2P2显著高出6.2%;qP和ETR在盛花期和盛果期随着灌水量的增加呈先增加后降低的变化趋势;利用隶属函数综合各指标分析得出:苗期至开花坐果期灌水量以100 m L/(株·d),开花坐果期至结果初期以250 m L/(株·d),盛果期至采收以灌水量450m L/(株·d)番茄产量保证且节约灌水,灌水频率为一天2次时对番茄生长有促进作用。  相似文献   

9.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考.  相似文献   

10.
We investigated the effects of partial root-zone drying (PRD) applied at different periods on leaf water relations, vegetative development, fruit yield, must and wine quality in wine grapes (Vitis vinifera L. cv. Monastrell) during a 3-year field experiment in order to determine the importance of the timing of PRD application on physiological and agronomical vine response under semiarid conditions. Two irrigation treatments were applied: conventional drip irrigation (CI) and PRD. Both treatments received the same annual water quantity. Each year the PRD treatment was applied at different periods of the growth cycle. In 1999 PRD was applied from veraison to harvest (end July–early September); in 2000 from fruit set to harvest (mid June–early September); and in 2001 PRD from budburst to harvest (mid April–early September). Leaf water relations and gas exchange during the experimental period were not significantly affected by PRD treatment. In 1999 and 2000 there was no significant treatment effect on vegetative development, yield or fruit quality. However, in 2001 (when PRD was applied from budburst to harvest), reproductive and vegetative development was clearly altered in PRD vines. Fruit set percentage and vegetative development (shoot length, pruning weight and primary and lateral leaf area) were significantly increased in PRD vines compared to CI. This resulted in both higher yield (kg per vine) (43%) and water use efficiency (40%) compared to CI vines. Berry number per cluster and cluster weight were also significantly increased in PRD vines. Notwithstanding higher yield in PRD vines and a similar berry size, the must and wine quality was not significantly altered, indicating a higher synthesis and accumulation of photoassimilates and metabolites in the berries of PRD vines. We conclude that there was an positive effect on vegetative and reproductive growth when long-term PRD was applied from the beginning of growing season (budburst), suggesting that early onset of PRD is desirable to intensify PRD response under these semiarid conditions. Nevertheless from these results we need to further investigate the long- and short-term effects of PRD, with moderate water amounts, on vegetative and reproductive development such as flowering and fruit set processes in wine grapes.  相似文献   

11.
Irrigation scheduling performance by evapotranspiration-based controllers   总被引:2,自引:0,他引:2  
Evapotranspiration-based irrigation controllers, also known as ET controllers, use ET information or estimation to schedule irrigation. Previous research has shown that ET controllers could reduce irrigation as much as 42% when compared to a time-based irrigation schedule. The objective of this study was to determine the capability of three brands of ET-based irrigation controllers to schedule irrigation compared to a theoretically derived soil water balance model based on the Irrigation Association Smart Water Application Technologies (SWAT) protocol to determine the effectiveness of irrigation scheduling. Five treatments were established, T1-T5, replicated four times for a total of twenty field plots in a completely randomized block design. The irrigation treatments were as follows: T1, Weathermatic SL1600 with SLW15 weather monitor; T2, Toro Intelli-sense; T3, ETwater Smart Controller 100; T4, a time-based treatment determined by local recommendations; and T5, a reduced time-based treatment 60% of T4. All treatments utilized rain sensors set at a 6 mm threshold. A daily soil water balance model was used to calculate the theoretical irrigation requirements for comparison with actual irrigation water applied. Calculated in 30-day running totals, irrigation adequacy and scheduling efficiency were used to quantify under- and over-irrigation, respectively. The study period, 25 May 2006 through 27 November 2007, was drier than the historical average with a total of 1326 mm of rainfall compared to 1979 mm for the same historical period. It was found that all treatments applied less irrigation than required for all seasons. Additionally, the ET controllers applied only half of the irrigation calculated for the theoretical requirement for each irrigation event, on average. Irrigation adequacy decreased when the ET controllers were allowed to irrigate any day of the week. All treatments had decreased scheduling efficiency averages in the rainy season with the largest decrease of 29 percentile points with a timer and rain sensor (T4) and an average decrease of 20 percentile points for the ET controllers, indicating that site specific rainfall has a significant effect on scheduling efficiency results. Rainfall did not drastically impact the average irrigation adequacy results. For this study, there were two controller program settings that impacted the results. The first setting was the crop coefficients where specific values were chosen for the location of the study when calculating the theoretical requirement whereas the controllers used default values. The second setting was the soil type that defines the soil water holding capacity of the soil. The ET controllers were able to regularly adjust to real-time weather, unlike the conventional irrigation timers. However, the incorporation of site specific rainfall measurements is extremely important to their success at managing landscape water needs and at a minimum a rain sensor should be used.  相似文献   

12.
在大棚滴灌条件下对厚皮甜瓜伊丽莎白不同生育期进行不同程度的亏缺灌溉,研究调亏灌溉对其植株生长、产量、品质及水分利用效率的影响.以土壤相对含水量为标准,在营养生长期和生殖生长期分别设置不同的土壤水分灌溉下限处理,分别是T1(75%~75%),T2(75%~55%),T3(65%~65%),T4(55%~75%),T5(55%~55%)5个试验处理.结果表明:在营养生长期,随着水分亏缺程度的加大,株高、茎粗、叶面积均呈减小趋势.在果实发育阶段,营养生长期及生殖生长期的水分亏缺对果实的生长、产量都有影响,均随亏缺程度的加大而降低,产量以处理T1和T2的最高,T5的最低,T3的大于T4的,各处理间差异具有统计学意义.水分利用效率为处理T2的最高,T1和T4的较低,T2与T4相比,在灌水基本相同的条件下,产量增加了26.2%,水分利用效率提高了27.7%.品质方面,水分亏缺提高了TSS含量;在营养生长期充分灌溉、生殖生长期亏水灌溉可以提高可溶性蛋白、游离氨基酸、维生素C的含量;而营养生长期亏水灌溉、生殖生长期充分灌溉有利于可滴定酸的合成.经综合分析,认为处理T2的灌溉下限设置可以作为武汉地区大棚滴灌条件下的甜瓜灌溉制度.  相似文献   

13.
膜下滴灌不同灌水处理对玉米形态、耗水量及产量的影响   总被引:13,自引:1,他引:12  
以大田玉米为试验材料,采用膜下滴灌,设置不同灌水处理方案,研究不同灌水处理对玉米植株形态、耗水量、产量和水分生产效率的影响。结果表明,膜下滴灌条件下土壤水分运移变化多在60 cm土层以上。玉米株高、茎节数与灌溉定额成正比例,灌溉定额高的处理(MDI-5)具有较高的株高、茎节数;各处理间叶片数差异不明显。膜下滴灌玉米全生...  相似文献   

14.
为了探究沟灌方式下不同灌水处理对夏玉米主要性状及水资源利用效率的影响,采用基于熵权法的模糊物元模型,以大田夏玉米为试验材料,进行了常规沟灌(conventional furrow irrigation,CFI)和宽垄沟灌(wide-ridge furrow irrigation,WFI)种植下3种灌水水平(土壤水分控制下限分别设置为田间持水量的60%,70%和80%)对夏玉米形态指标(株高、叶面积)、产量性状(穗长、穗粗、百粒质量、产量)以及水资源利用效率(灌溉利用效率、水分生产效率)的影响分析.结果表明:同一水分处理下,夏玉米WFI灌溉组合方案优于CFI灌溉组合方案;对于水资源相对丰富地区建议采用WFI-70%θ灌溉方案,对于水资源相对匮乏地区建议采用WFI-60%θ灌溉方案;基于熵权法的模糊物元模型较CRITIC法的模糊物元模型评价效果更好,基于熵权法的模糊物元模型对沟灌夏玉米主要性状和水资源利用效率方面具有一定的应用价值.该研究为沟灌夏玉米合理灌溉提供了科学依据.  相似文献   

15.
[Objective]Irrigation schedule needs to know the spatiotemporal dynamics of soil moisture in root zone. The objective of this paper is to investigate the feasibility of using matric potential measured at 20 cm below the drip emitter as a proxy for soil moisture in the root zone to schedule irrigation.[Method]The experiment was conducted in a greenhouse and the model plant was tomato. We compared seven matric potential (SMP) thresholds in that whenever the measured soil matric potential dropped below them, drip irrigation was resumed. The values of the SMP thresholds varied from flowering and fruit-setting stage to fruiting stage, and the seven combinations (flowering and fruit-setting stage/fruiting stage) were -15 kPa/-15 kPa (S1), -15 kPa/-30 kPa (S2), -15 kPa/-45 kPa (S3), -25 kPa/-25 kPa (S4), -30 kPa/-15 kPa (S5), -30 kPa/-30 kPa (S6), and -30 kPa/-45 kPa (S7). In each treatment, we measured growth, fruit quality, water consumption and water use efficiency of the tomato.[Result]Stem diameter increased with SMP threshold at both flowering and fruit-setting stage and fruiting stage, whereas the plant height was only responsive to SMP at flowing and fruit-setting stage. The relative chlorophyll content in leaf (SPAD) did not show significant difference between treatments at flowering and fruit-setting stage but inversely increased with the SMP threshold at fruit setting stage. Decreasing the SMP threshold at flowering and fruit-setting stage could reduce the percentage of defective fruits and increase soluble solids content. Yield increased inversely with SMP threshold at fruit setting stage, peaking when SMP was -45 kPa. Lowering the SMP threshold increased irrigation amount and hence water consumption, thereby decreasing water use efficiency. [Conclusion]Our experimental results suggest that setting the SMP at -30 kPa at the flowering and fruit-setting stage and -45 kPa at the fruiting period appears to be optimal to best balance yield, fruit quality, irrigation water use efficiency and water use efficiency for winter-spring tomato grown in solar greenhouse in North China. © The Author(s) 2019.  相似文献   

16.
Irrigation technologies [i.e., automatic timer, automatic timer with rain sensor, automatic timer with soil water sensor (SWS), and evapotranspiration (ET) controller] were compared in a bahiagrass plot study by measuring irrigation applied, water volumes drained, and NO3–N and NH4–N leached. All irrigation technologies were scheduled to irrigate on Sunday and Thursday. Three different irrigation depths were evaluated with the automatic timer: 15, 19, and 32 mm. SWS treatment allowed scheduled irrigation if soil water content was estimated to be below 70 % of water holding capacity, while the ET treatment allowed scheduled irrigation if soil water content was estimated to be below 50 % of plant available water. The rain sensor, SWS, and ET controller treatments applied significantly less water (p < 0.05) than the automatic timer treatment (which irrigates on specific days and times without regard to system conditions), reducing water by 17–49, 64–75, and 66–70 %, respectively. NO3–N and NH4–N were only significantly different after the second fertilizer application, which coincided with the 32 mm per event irrigation rate for the automatic timer treatment. Under these conditions, the automatic timer treatment had significantly greater NO3–N and NH4–N leachate than other treatments due to greater occurrence of soil water content exceeding water holding capacity, which resulted in drainage. Findings suggest that water can be saved using rain sensors, SWSs, or ET controllers and that leachate NO3–N and NH4–N can be reduced using rain sensors, SWSs, or ET controllers.  相似文献   

17.
温室滴灌土壤基质势调控对番茄生长、品质和耗水的影响   总被引:1,自引:1,他引:0  
【目的】获得华北地区日光温室冬春茬番茄优质高产滴灌灌溉制度。【方法】采用田间试验的方法,布置了7个不同土壤基质势阈值的试验,在番茄开花坐果期和结果期分别控制滴头正下方20 cm深度土壤基质势阈值在-15kPa和-15 kPa(S1)、-15 kPa和-30 kPa(S2)、-15 kPa和-45 kPa(S3)、-25 kPa和-25 kPa(S4)、-30 kPa和-15 kPa(S5)、-30 kPa和-30 kPa(S6)以及-30 kPa和-45 kPa(S7),研究了番茄生育期内土壤基质势动态调控对番茄生长、果实品质、耗水量和水分利用效率等的影响。【结果】在试验控制的土壤基质势范围内,①在番茄开花坐果期,番茄株高和茎粗均随土壤基质势阈值的升高而增加,进入结果期后不同土壤基质势处理下的番茄株高差异不明显,但茎粗仍随着土壤基质势阈值的升高而增加;②开花坐果期不同土壤基质势处理下的叶片SPAD值(相对叶绿素量)无显著差异,但结果期不同处理叶片SPAD值差异明显,表现为开花坐果期土壤基质势阈值高于低处理(S5、S6和S7)的叶片SPAD值;③对于开花坐果期土壤基质势阈值较低的处理,其畸形果率低、果实可溶性固形物量高,并且随着结果期土壤基质势的降低,畸形果率呈降低趋势,果实可溶性固形物量呈升高趋势;④番茄产量随着结果期土壤基质势阈值的降低而升高,-45 kPa处理番茄的产量最高;⑤随着整个生育期土壤基质势阈值的升高,番茄灌水量和耗水量显著增加,灌溉水利用效率和水分利用效率显著降低。【结论】综合考虑番茄产量、果实品质、灌溉水利用效率和水分利用效率等,华北地区日光温室秋冬茬番茄高产优质高水分利用效率的土壤基质势阈值为开花坐果期-30 kPa、结果期-45 kPa。  相似文献   

18.
为了合理地制定大棚滴灌灌溉制度,以大棚黄瓜为对象,在结果期设置了4种膜下滴灌灌溉频率(每隔3、6、9、12 d灌溉一次),并以传统沟灌灌溉作为对照,研究了不同灌溉频率对黄瓜生长(株高,茎粗和叶片数)和产量的影响。结果表明,与传统沟灌相比,采用滴灌灌溉有利于黄瓜生长并获得高产;在滴灌条件下,灌溉频率越高,植株越高大粗壮,叶片越多,同时促进了果实成熟;但灌溉频率对总产量影响较小,不同处理之间产量差异均不显著(p0.05)。综合比较,6 d灌溉一次黄瓜长势较好,产量最大112.4 t/hm~2,灌溉工作量合理,因此,建议在大棚黄瓜结果期滴灌灌溉频率以每隔6 d一次为宜。  相似文献   

19.
微咸水造墒对棉花生长发育及产量的影响研究   总被引:1,自引:0,他引:1  
采用小区对比试验方法,研究了河北低平原区旱地等雨播种(HD)、播前淡水造墒(S1)以及矿化度为2.2g/L(S2.2)和5g/L(S5)微咸水造墒等不同处理对棉花生长发育和产量的影响。结果表明,棉花生育期内HD处理0~100cm土壤含水率明显低于3种造墒处理;S5处理0~40cm土壤盐分含量最高,但降雨淋洗效果较为显著...  相似文献   

20.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号