首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After measuring root morphological indices, such as the length, diameter, volume density, surface area and tip number of both living and dead roots on the ridge and slope under alternate furrow irrigation (AFI) and conventional furrow irrigation (CFI, control treatment) using Minirhizotrons, the responses of root morphology and distribution in maize to AFI were analyzed. Results show that root morphological indices of living or dead roots were lower on the ridge than on the slope under AFI, whereas root morphological indices of living or dead roots were higher on the ridge than on the slope under CFI. Compared to CFI, AFI significantly increased root tip number and surface area of fine roots (with the diameter of ≤2.5 × 10−1 mm) and promoted roots to deeper soil on the slope, and then simulated root water uptake. AFI only decreased the grain yield by 0.9%, but increased water use efficiency on seed yield by 8.3%. Thus AFI promoted root growth and metabolism on the slope, increased the effective absorption area of root system and improved water use efficiency without significant reduction of grain yield.  相似文献   

2.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP0.75 and WP0.50) were deficit irrigation treatments, and received 75% and 50% of WP1.0 irrigation amount. The highest seed yield was achieved with the WP1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels (P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP0.75 and WP0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP0.50 treatment, and is not recommended. In conclusion, the WP0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water.  相似文献   

3.
Irrigation is by far the largest consumer of water in Alberta. The government is therefore dependent on this sector to achieve water savings for reallocating water to other sectors. Hence, a major objective of a recent government strategy is to see an increase in water efficiency and productivity of 30%. A survey of two irrigation districts was undertaken to determine the measures irrigators have taken and plan to take in the future to improve irrigation technologies and management practices to enhance water use efficiency and which factors facilitate or impede the adoption of such measures. As anticipated, the adoption rate varied between the two districts as a result of differences in production characteristics. The major drivers of adoption were to ensure security of water supply during drought, to increase quantity and quality of crops, and to save cost, while the major impediments were financial constraints and physical farm conditions. It seems that most feasible technological improvements have been implemented and considerable financial improvements or subsidies will be necessary to encourage a significant increase in adoption. There seems to be considerable scope for improvement through the adoption of better management practices. Considering that farmers in the two irrigation districts also have modest plans to adopt improved management practices, promotion and education campaigns that encourage new practices that involve minimal cash outlays might yield the greatest water savings in the future.  相似文献   

4.
Two-year field experiments were conducted to investigate the effect of alternate partial root-zone drip irrigation on fruit yield, fruit quality and water use efficiency of table grape (Vitis vinifera L. cv Rizamat) in the arid region of northwest China. Three irrigation treatments were included, i.e. CDI (conventional drip irrigation, both sides of the root-zone irrigated), ADI (alternate drip irrigation, both sides of the root-zone irrigated alternatively with half the water) and FDI (fixed drip irrigation, only one side of the root system irrigated with half the water). Results indicated that compared to CDI, ADI kept the same photosynthetic rate (Pn) but reduced transpiration rate, thus increased leaf water use efficiency (WUE) of table grape. And diurnal variation of leaf water potential showed no significant differences during 7.00 a.m. to 14.00 p.m. in both years. ADI also produced similar yield and improved WUEET by 26.7–46.4% and increased the percentage of edible grape by 3.88–5.78%, vitamin C content in the fruit by 15.3–42.2% and ratio of total soluble solid concentration/titrated acid in both years as compared to CDI. Thus ADI saved irrigation water, improved the water use efficiency and fruit quality of table grape without detrimental effect on the fruit yield in arid region.  相似文献   

5.
Adoption of more uniform sprinkler systems involves a trade off between increased capital expenditure on equipment and the benefits associated with reduced water application when application is uniform. An empirical analysis of the economics of lettuce production, grown using sprinkler systems under the windy conditions of the Swan Coastal plain in Western Australia is presented, where the yield response to water exhibits eventual declining marginal productivity. A range of sprinkler designs that have been field-tested for performance were examined. The optimal per-crop water application for the least efficient system was up to double the application rate of the most efficient system. However, the economic analysis demonstrates that there are clear incentives for adopting more water-efficient systems despite the higher capital cost, because of the yield depressing effect of over-watering. Sensitivity analysis demonstrates substantially poorer incentives for improving irrigation efficiency when yield relationships follow a Mitscherlich functional form.
Donna BrennanEmail:
  相似文献   

6.
A field study (1999-2000 to 2001-2002) was carried out to optimize the irrigation frequency and suitable water application methods for cauliflower with a view to increase curd yield (CY) and water use efficiency (WUE). Check Basin (CB), Each Furrow (EF) and Alternate Furrow (AF) methods were tested with three irrigation frequencies depending on the attainment of soil matric potential (Ψm) value at 0.2 m depth as: −0.03 MPa (F1), −0.05 MPa (F2) and −0.07 MPa (F3). Maximum CY was recorded under F1 and decreased by 10.4 and 31.4%, respectively under F2 and F3 frequencies. In contrast, WUE decreased by 9.3% from F3 to F1. Highest CY and WUE obtained under CB followed by EF and AF methods. Furrow application methods saved 12-24% irrigation water over CB method. Maximum soil water stress coefficient (Ks) recorded at curd development stage in comparison to other stages. Both seasonal evapotranspiration (ETa) and yield-moisture stress index (Kys) recorded positive linear relationships with CY. Present study shows a crop response factor of 0.822 for cauliflower. In this region, cauliflower should be irrigated with check basin method at an interval of 8-10 days.  相似文献   

7.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

8.
Rainfed crop production in northern China is constrained by low and variable rainfall, and by improper management practices. This study explored both the impact of long-term rainfall variability and the long-term effects of various combinations of maize stover, cattle manure and mineral fertiliser (NP) applications on maize (Zea mays L.) yields and water use efficiency (WUE) under reduced tillage practices, at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The experiment was set up according to an incomplete, optimal design, with 3 factors at five levels and 12 treatments including a control with two replications. Grain yields were greatly influenced by the amount of rain during the growing season, and by soil water at sowing. Annual mean grain yields ranged from 3 to 10 t ha−1 and treatment mean yields from 4.2 to 7.2 t ha−1. The WUE ranged from 40 in treatments with balanced nutrient inputs in dry (weather/or soil) years to 6.5 kg ha−1 mm−1 for the control treatments in wet years. The WUE averaged over the 15-year period ranged from 11 to 19 kg ha−1 mm−1. Balanced combination of stover (3000-6000 kg), manure (1500-6000 kg) and N fertiliser (105 kg) gave the highest yield and hence WUE. It is suggested that 100 kg N per ha should be a best choice, to be adapted according to availability of stover and manure. Possible management options under variable rainfall conditions to alleviate occurring moisture stress for crops must be tailored to the rainfall pattern. The potentials of split applications, targeted to the need of the growing crop (response nutrient management), should be explored to further improve grain yield and WUE.  相似文献   

9.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   

10.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

11.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

12.
Non-point agrarian contamination makes its allocation to a specific territory difficult. This first part of the study seeks to analyze contamination resulting from water use in 54,438 ha of Bardenas irrigation district included in the Arba basin (BID-Arba). To this end, water balances were carried out in BID-Arba by means of measuring or estimating the main inputs, outputs and water storage between 1 April 2004 and 30 September 2006. Also, the spatial-temporal variability in water use was analyzed.The semester error balances were acceptable (between 11% and −6%), which permits the attribution of the mass of pollutants exported in drainage to the irrigation area evaluated, the objective of the second part of the study. Irrigation efficiency (IE) in BID-Arba was high (90%) despite the fact that Irrigation Sub-District VII (ISD-VII), with considerable flood irrigation drainage (27%), and ISD-XI with considerable losses due to evaporation and wind drift in sprinkler irrigation systems (15%), brought down the average (IEVII = 73%; IEXI = 83%). Irrigation management was inadequate as there was a water deficit (WD) of 9%, partly affected by the 2005 drought (WDApr-05/Sep-05 = 21%) and the low irrigation doses applied in ISD-XI (WDXI = 12%).To sum up, intense re-use of water caused a water use index (percentage of water used by the crops) of 85% which surpassed 90% in periods of drought. Nevertheless, irrigation management should be improved in order to annul the water deficit and to maximize the productivity of the agrarian system.  相似文献   

13.
This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water resources and the approaching introduction of water charges raise the concern for more efficient water use. With the data envelopment analysis (DEA) techniques used to compute farm-level technical efficiency measures and sub-vector efficiencies for water use, it was shown that under constant returns to scale (CRS) and variable returns to scale (VRS) specification, substantial technical inefficiencies, of 49% and 16%, respectively, exist among farmers. The sub-vector efficiencies for water proved to be even lower, indicating that if farmers became more efficient using the technology currently available, it would be possible to reallocate a fraction of the irrigation water to other water demands without threatening the role of small-scale irrigation. In a second step, Tobit regression techniques were used to examine the relationship between sub-vector efficiency for water and various farm or farmer characteristics. Farm size, landownership, fragmentation, the type of irrigation scheme, crop choice and the irrigation methods applied showed a significant impact on the sub-vector efficiency for water. Such information is valuable for extension services and policy makers since it can help to guide policies towards increased efficiency.  相似文献   

14.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

15.
Groundwater is being mined in much of the irrigated area of the central and southern High Plains of the USA. Profits and risks inherent in irrigation management depend on the association between crop yield and level of water application. Research was conducted over a 14 year period (1974–1987) to establish the yield vs. water application relationships of corn, grain sorghum, and sunflower. The research was located near Tribune, Kansas, USA on a Ulysses silt loam soil. Plots were level-basins to which water was added individually through gated pipe. Irrigation studies of the three crops were located adjacent to each other. Irrigation treatments were arranged in completely randomized blocks with three replications. As total irrigation amount increased from 100 to 200, 200 to 300, and 300 to 400 mm, sunflower yield increased by 0.53 Mg ha−1, 0.43 Mg ha−1, and 0.37 Mg ha−1, respectively. Corn outyielded grain sorghum at total irrigation amounts of 345 mm and above. Yield increase over continuous dryland was greater in corn than in grain sorghum at total irrigation amounts above 206 mm. Therefore, if grain mass is the consideration, grain sorghum is a better choice than corn at less than 206 mm of irrigation, whereas corn is a better choice than grain sorghum at more than 206 mm of irrigation.  相似文献   

16.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

17.
A research has been carried out to determine the effects of nutrition systems and irrigation programs on soilless grown tomato plants under polyethylene covered unheated greenhouse conditions. Two nutrition systems (open and closed) and three irrigation programs (high, medium and low) based on integrated indoor solar radiation triggering thresholds (1 MJ m−2 [0.4 mm], 2 MJ m−2 [0.8 mm] and 4 MJ m−2 [1.6 mm]) in both nutrition systems have been tested. Applied and discharged nutrient solution, evapotranspiration, total and marketable yield have been measured and water use efficiency has been calculated. The highest total yield has been obtained from the open system with respectively 11% and 7.2% increases in autumn and spring. Applied nutrient solution volume and seasonal ET have been modified between 47.8-180.4 l plant−1 and 41.7-145.5 l plant−1 respectively during both growing seasons. As average of two growing seasons, respectively 826.5 and 330.6 m3 ha−1 nutrient solutions have been discharged from the greenhouse in the open and closed systems. WUE of treatments varied between 33-55 kg m−3 in autumn and 26-35 kg m−3 in spring. Highest WUE values have been determined in 4 MJ m−2 and in the closed system in both growing seasons. Results showed that the closed system and infrequent irrigations increased water use efficiency while decreasing yield and discharged nutrient solution.  相似文献   

18.
In cold, semi-arid areas, the options for crop diversification are limited by climate and by the water supply available. Growing irrigated crops outside the main season is not easy, because of climatic and market constraints. We carried out an experiment in Albacete, Central Spain, to measure the water use (evapotranspiration, ET) of broccoli (Brassica oleracea L. var. italica Plenck) planted in late summer and harvested at the end of fall. A weighing lysimeter was used to measure the seasonal ET under sprinkler irrigation. Consumptive use reached 359 mm for a period of 109 days after transplanting. The crop coefficient (Kc) for broccoli was obtained and compared to the standard recommendations for normal planting dates. Dual crop coefficient computations of the lysimeter ET data indicated that evaporation represented 31% of seasonal ET. An analysis of the variation in daily Kc values at a time of full cover suggested that the use of a grass lysimeter as a reference ET (ETo) was superior to using the ASCE Penman-Monteith (ASCE PM) equation at hourly time steps, which in turn caused less variability in Kc than when using the FAO-56 Penman-Monteith (FAO-56 PM) equation at daily time steps for the ETo calculation. An additional experiment aimed at evaluating the yield response to applied irrigation water by the drip method (seven treatments, from 59 to 108% of ETc) generated a production function that gave maximum yields of near 12 t ha−1 at an irrigation level of 345 mm, and a water use efficiency of 3.37 kg m−3. It is concluded that growing broccoli in the fall season is a viable alternative for crop diversification, as the lower yields obtained here may be more than compensated for by the higher produce prices in autumn, at a time of the year where irrigation water demand for other crops is very low.  相似文献   

19.
Low pressure drip irrigation is being promoted in Sub Saharan Africa as an alternative to traditional methods of small scale irrigation of vegetables. The African Market Garden (AMG) is a horticultural production system for smallholders based on low-pressure drip irrigation combined with an improved crop management package. The agronomic and economic performance of the AMG is compared to two gardens irrigated manually with watering cans. One of these gardens is managed according to the same improved crop management package as in the AMG, this treatment is called Improved Management (IM). The other garden is managed according to common practices of vegetable producers in the area, this treatment is called the Farmer Practice (FP). Crop productivity, labor and water use were monitored for two vegetable species (okra and eggplants). The experiment was performed on-station in Niger on three adjacent 500 m2 plots in a sandy acid soil. It was found that improved crop management practices greatly enhance crop productivity over traditional methods at comparable production costs. The AMG gave higher crop yields and higher returns to investment than the treatments irrigated with watering cans. Labor accounts for up to 45% of the production cost in vegetable gardens irrigated by hand, where 80% of the producer time is spent on irrigation. The total labor requirement for the drip irrigated AMG was on average 1.1 man hours per day against 4.7 man hours per day for the Farmers Practice on a 500 m2 garden. Returns on labor are at least double for the AMG against the other treatments. The returns on land from eggplant were found to be US$ 1.7, 0.8 and 0.1 per m2 for the AMG, IM and FP respectively. The returns on water for the cultivation of eggplant are around US$ 2 per m3 in the AMG, against US$ 0.1 in the Farmers Practice. This experiment showed the strong positive impact of drip irrigation and improved crop management practices on profits at minimal environmental costs, indicating that transformation of existing practices poses a considerable potential towards sustainable agricultural development.  相似文献   

20.
To investigate the dynamic change of plant nitrogen (N) absorption and accumulation from different root zones under the partial root-zone irrigation (PRI), maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed partial root-zone irrigation, FPRI), or alternatively on one of two sides (alternate partial root-zone irrigation, APRI). And the isotope-labeled 15N-(NH4)2SO4 was applied to one half of the container with (14NH4)2SO4 to the other half so that N inflow rates can be tracked. Results showed that APRI treatment increased root N absorption in the irrigated zone significantly when compared to that of CI treatment. The re-irrigated half resumed high N inflow rate within 5 days after irrigation in APRI, suggesting that APRI had significant compensatory effect on N uptake. The amount of N absorption from two root zones of APRI was equal after two rounds of alternative irrigation (20 days). The recovery rate, residual and loss percentages of fertilizer-N applied to two zones were similar. As for FPRI treatment, the N accumulation in plant was mainly from the irrigated root zone. The recovery rate and loss percentage of fertilizer-N applied to the irrigated zone was higher and the residual percentage of fertilizer-N in soil was lower if compared to those of the non-irrigated zone. The recovery rate of fertilizer-N in APRI treatment was higher than that of the non-irrigated zone but lower than that of the irrigated zone in FPRI treatment. In total, both FPRI and APRI treatments increased N and water use efficiencies but only consumed about 70% of the irrigated water when compared to CI treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号