首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rainfed crop production in northern China is constrained by low and variable rainfall, and by improper management practices. This study explored both the impact of long-term rainfall variability and the long-term effects of various combinations of maize stover, cattle manure and mineral fertiliser (NP) applications on maize (Zea mays L.) yields and water use efficiency (WUE) under reduced tillage practices, at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The experiment was set up according to an incomplete, optimal design, with 3 factors at five levels and 12 treatments including a control with two replications. Grain yields were greatly influenced by the amount of rain during the growing season, and by soil water at sowing. Annual mean grain yields ranged from 3 to 10 t ha−1 and treatment mean yields from 4.2 to 7.2 t ha−1. The WUE ranged from 40 in treatments with balanced nutrient inputs in dry (weather/or soil) years to 6.5 kg ha−1 mm−1 for the control treatments in wet years. The WUE averaged over the 15-year period ranged from 11 to 19 kg ha−1 mm−1. Balanced combination of stover (3000-6000 kg), manure (1500-6000 kg) and N fertiliser (105 kg) gave the highest yield and hence WUE. It is suggested that 100 kg N per ha should be a best choice, to be adapted according to availability of stover and manure. Possible management options under variable rainfall conditions to alleviate occurring moisture stress for crops must be tailored to the rainfall pattern. The potentials of split applications, targeted to the need of the growing crop (response nutrient management), should be explored to further improve grain yield and WUE.  相似文献   

2.
A greenhouse experiment was conducted at Japan International Research Center for Agriculture Science (JIRCAS), Okinawa Subtropical Station, Ishigaki, Japan with three multiple water application and two single water applications to study the effects of them on tomato yield, soil water content and water use efficiency. Multiple water application is a technique use to add the required amount of water during irrigation in multiple equal parts a day instead of one complete set (single water application) during the irrigation event. The multiple water application treatments were the day time (DT), day-night time (DNT) and night time (NT) while the single water application treatments were morning time (MT) and evening time (ET). In multiple water irrigation treatments the water was added to the soil into three equal parts. The supplied irrigation water was the same for all treatments and gradually increased with plant age to cover the crop water requirement during the growing season.The results revealed that multiple water application increased tomato yield by 5% over the highest yield of single water application. The DT treatment increased tomato yield by 5% and 15% compared to ET and MT treatments, respectively. For multiple water application, the DT was the best irrigation timing because it increases the tomato yield by 8% and 12% compared to DNT and NT, respectively. ET irrigation was better than MT irrigation for single water application. Multiple water application led to an increased in soil water content compared to single water application. By applying the same amount of water for all treatments, the DT treatment increased water use efficiency by 5-15% compared to ET and MT treatments of single water application. In conclusion, multiple water application is better than single water application and by choosing the proper irrigation timing, higher tomato yield resulting from efficient water management can be obtained.  相似文献   

3.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

4.
Population growth, urban expansion and economic development are increasing competition for water use between agriculture and other users. In addition, the high rate of soil degradation and declining soil moisture in the Sub-Saharan African Region have called for several crop production management and irrigation options to improve soil fertility, reduce water use by crops and produce ‘more crops per drop of water’. Notwithstanding this, considerable variations exist in the literature on water-use efficiency, WUEcwu (economic yield per water used) for maize (Zea mays L.) across climates and soil management practices. Different views have been expressed on the effect of different rates of nitrogen (N) application on transpiration efficiency, TE (biomass produced per unit of water transpired). The objectives of the study were to assess the effect of different rates of N-enriched municipal waste co-compost and its derivatives on TE, WUEcwu and yield of maize (Z. mays L.) in comparison to inorganic fertiliser. The greenhouse pot experiment was conducted in Accra, Ghana on a sandy loam soil (Ferric Lixisol) using a split plot design. The main plot treatments were soil (S), dewatered faecal sludge (DFS), municipal solid waste compost (C), co-compost from municipal solid waste and dewatered faecal sludge (Co), compost enriched with (NH4)2SO4 (EC), co-compost enriched with (NH4)2SO4 (ECO), (NH4)2SO4 and NPK15-15-15 + (NH4)2SO4. The sub-plot treatments were different rates of application of nitrogen fertiliser applied at the rate of 91, 150 and 210 kg N ha−1 respectively. Maize cv. Abelehii was grown in a poly bag filled with 15 kg soil. Eight plants per treatment were selected randomly and used for the collection of data on growth parameters forth-nightly. At physiological maturity two plants per treatment were also selected randomly from each treatment plot for yield data. The results showed that TE of maize (Z. mays) varied for the different treatments and these are 6.9 Pa in soil (S) alone to 8.6 Pa in ECO. Increase in N application rate increased TE at the vegetative phase for fast nutrient releasing fertilisers (DFS, ECO, EC, NPK + (NH4)2SO4, (NH4)2SO4) and at the reproductive phase for slow nutrient releasing fertilisers (C and CO). Water-use efficiency increased significantly as rate of N application increased. Treatment ECO improved crop WUEcwu and was 11% and 4 times higher than that for NPK + (NH4)2SO4 or soil alone; and 18-36% higher than those for DFS and CO. Treatment ECO used less amount of water to produce dry matter yield (DMY) and grain yield (GY) that was 5.2% and 12.6%, respectively, higher than NPK + (NH4)2SO4. Similarly, the DMY and GY for ECO was 8.9-18.5% and 23.4-34.7%, respectively, higher than DFS and CO. High nutrient (N and K) uptake, TE, and low leaf senescence accounts for 83% of the variations in DMY whereas WUEcwu accounts for 99% of the variations in GY. Thus, the study concluded that different sources of fertiliser increased TE and WUEcwu of maize differently as N application rate increases.  相似文献   

5.
Soil water supply is the main limiting factor to crop production across the Loess Plateau, China. A 2-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate various water management practices for achieving favorable grain yield (GY) with high water use efficiency (WUE) of spring maize (Zea mays L.). Four practices were examined: a rain-fed (RF) system as the control; supplementary irrigation (SI); film mulching (FM); and straw mulching (SM) (in 2008 only). The soil profile water storage (W) and the crop evapotranspiration (ET) levels were studied during the maize growing season, and the GY as well as the WUE were also compared. The results showed that mean soil water storage in the top 200 cm of the profile was significantly (P < 0.05) increased in the SI (380 mm in 2007, 411 mm in 2008) and SM (414 mm in 2008) compared to the FM (361 mm in 2007, 381 mm in 2008) and RF (360 mm in 2007, 384 mm in 2008) treatments. The soil water content was lower at the end of growing season than before planting in the 60-140 cm part of the profile in both the RF and FM treatments. Cumulative ET and average crop coefficiency (Kc) throughout the whole maize growing season were significantly (P < 0.05) higher in the SI (ET, 501 mm in 2007, 431 mm in 2008; Kc, 1.0 in 2007, 0.9 in 2008) treatment than in the other treatments. Both FM and SI significantly improved the GY. The WUE were increased significantly (23-25%; P < 0.05) under the FM treatment. It was concluded that both SI and FM are beneficial for improving the yield of spring maize on the Loess Plateau. However, FM is preferable because of the shortage of available water in the area.  相似文献   

6.
Frequency and depth of irrigation play crucial role in crop yield and use efficiency of water resource. To test this hypothesis a field study was carried out in November to January of 2001-2002 to 2003-2004 on a sandy loam (Aeric haplaquept) for quantifying the frequency and depth of irrigation on growth, curd yield (CY) and water use pattern of cauliflower (Brassica oleracea L. var. botrytis). Four irrigation frequencies depending on the attainment of cumulative pan evaporation (CPE) values of: 25 (CPE25), 31(CPE31), 38 (CPE38) and 45 (CPE45) mm were placed in main-plots, with three depth of irrigation (IW) of 35 (IW35), 30 (IW30) and 25 (IW25) mm in sub-plots. Water use efficiency (WUE), net evapotranspiration efficiency (WUEET) and irrigation water use efficiency (WUEI) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) were calculated using the relationship between CY and seasonal actual evapotranspiration (SET). A continuous increasing trend in growth parameters, yield and WUEI was recorded with the increase in SET from CPE45-IW25 to CPE31-IW30. However with further increase in SET the same decreased up to CPE25-IW35 regime. Highest WUE and WUEET obtained under CPE38-IW35 regime where SET value was 5% lower than the status of SET under CPE31-IW30. This study confirmed that critical levels of SET needed to obtain maximum curd yield or WUE, could be obtained more precisely from the knowledge of MWUE and EWP.  相似文献   

7.
The effects of high temperature stress and supplemental irrigation on seed yield and water use efficiency (WUE) of canola (Brassica napus L.) were studied in a field experiment conducted for 2 years. The experiment was a randomized complete block design arranged in split plot, conducted at Agricultural Research Station of Gonbad, Iran. It was arranged in two conditions, i.e. supplemental irrigation and rainfed. Two cultivars of canola (Hyola401 and RGS003) as subplots were grown at five sowing dates as main plots. The sowing dates were 9 November, 6 December, 5 January, 4 February and 6 March in 2005-2006 and 6 November, 6 December, 5 January, 4 February and 6 March in 2006-2007, to have a wide range of environmental conditions around flowering and seed filling periods, and to coincide reproductive stages of the crop with high temperature stress. Seed yield was improved due to field management practices, such as supplemental irrigation and optimum sowing date. Supplemental irrigation was an efficient practice to mitigate water stress, and to increase aboveground dry matter and seed yield. There was a strongly negative relationship between seed yield and air temperature during reproductive stages. Delay in sowing led to more rapid developmental of canola, decreased aboveground dry matter, leaf area index (LAI), harvest index (HI), WUE, and seed yield. Achieving a high aboveground dry matter was an essential prerequisite for high reproductive growth and a high seed yield. Greater seed yield and WUE at first sowing date were associated with greater LAI and aboveground dry matter, and lower temperatures during reproductive stages. The results support the view that WUE can be used as an indirect selection criterion for seed yield in genotypic selection.  相似文献   

8.
以水稻“绿旱639”为研究对象,在水稻的种期(T1)、芽期(T2)和苗期(T3)分别进行远红光辐照,并设置对照组(CK)。通过测算水稻幼苗的生理指标、生长特性以及水分利用效率,研究了阶段辐照下远红光对水稻幼苗的生长及水分利用效率影响。结果表明:种期进行辐照水稻幼苗的叶面积比芽期和苗期分别增加了15.82%和20.46%。芽期进行辐照水稻幼苗的相对生长速率比种期和苗期分别增加了23.10%和37.01%,根长、根冠比、净同化速率等指标的增长幅度均大于种期和苗期辐照。苗期进行辐照水稻幼苗的叶片水分利用效率与种期和芽期辐照相比,分别增加了16.60%和23.07%。综上,在水稻幼苗的芽期进行远红光辐照,可以有效促进水稻幼苗的生长。在水稻幼苗的苗期进行远红光辐照,可以显著提高水稻幼苗的水分利用效率。本研究从光学农业角度为提高水稻以及其他作物水分利用效率提供了参考。  相似文献   

9.
Irrigation management strategy invites the quantification of crop response to irrigation frequencies. Conventionally, mulches increase the yield and water use efficiency (WUE) to a great extent by augmenting the water status in the root zone profile. A field study was carried out during the winter season (November-March) of 2003-2004 and 2004-2005 at the Central Research Farm of Bidhan Chandra Krishi Viswavidyalaya (Latitude 22°58′N, Longitude 88°31′E and altitude 9.75 m amsl), Gayeshpur, India, to evaluate the effect of irrigation frequencies and mulches on evapotranspiration rate from tomato crop field as well as leaf area index (LAI), fruit yield and WUE of the crop. The experiment was laid out in a split-plot design where three irrigation treatments {rainfed (RF); CPE50 and CPE25 where irrigation was given at 50 and 25 mm of cumulative pan evaporation (CPE)} were kept in the main plots and the subplots contained four mulch managements {no mulch (NM), rice straw mulch (RSM), white polyethylene mulch (WPM) and black polyethylene mulch (BPM)}. Under CPE25, tomato crop recorded significantly higher leaf area index (LAI) over CPE50 and rainfed condition. LAI value under BPM was 9-30% more over other mulches. Maximum variation of LAI among different treatments was recorded at 60 days after transplanting (DAT). Fruit yield under CPE25 was 39.4 Mg ha−1; a reduction of 7 and 30% has been obtained under CPE50 and RF condition. The use of mulch increased 23-57% yield in comparison to NM condition. Actual evapotranspiration rate (ETR) was 1.82 mm day−1 under CPE25 and declined by 15 and 31% under CPE50 and RF condition, respectively. The variation of ETR among different mulches became more prominent under maximum water stressed (RF) condition, whereas the variation was negligible under CPE25 frequency. Irrespective of mulching WUE was highest under moderately wet (CPE50) soil environment. Among different mulches, BPM was responsible for attaining the highest WUE value (25.1 kg m−3), which declined by 22, 21 and 39% under WPM, RSM and NM, respectively.  相似文献   

10.
为了探讨喷灌和液膜覆盖对玉米生产的调控作用,在大田喷灌条件下,分析了3个土壤水分灌溉下限对液膜覆盖玉米生长发育过程的影响。通过对比试验,研究了液体地膜盖对玉米产量结构和水分利用效率(WUE)的影响。结果表明,高、中、低水分处理(灌水量分别为51.8、35.0、31.4 mm)生物累积量分别达到16 699.99、14 216.38和 13 239.14 kg/hm2,液膜覆盖高水分处理有利于干物质的累积,玉米的干物质累积曲线呈“慢-快-慢”趋势。液膜覆盖显著提高了玉米的百粒质量,  相似文献   

11.
Sap flow meters based on the stem heat balance method were used to measure the mass flow rates or water use in young potted tea (Camellia sinensis L.) plants of clones AHP S15/10 and BBK35. The meters were constructed on site and installed onto the stem or branch sections of field growing plants in an experiment originally designed to study the effects of plant population density and drought on the productivity and water use of young tea clones. The objective of the study was to use the SHB method as a first attempt to use sap flow meters for determining the water use of young tea growing in the field under well watered conditions in Tanzania. The results are reported and recommendation made for further work on using the technique.  相似文献   

12.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

13.
The effects of pre-anthesis water deficit and cycle length were examined in Papaver somniferum L., cultivated for alkaloid production, in two locations in southern Spain. The vegetative period was shortened by extending the photoperiod through supplemental lighting in the field, while water deficit in pre-anthesis was induced by avoiding irrigations and installing rain shelters. The treatments were: IN (irrigated-normal photoperiod), IL (irrigated-hastened flowering), DN (water deficit in pre-anthesis-normal photoperiod) and DL (water deficit in pre-anthesis and hastened flowering). The artificial photoperiod hastened the flowering by 15 and 21 days, for irrigated and deficit treatments respectively. Seasonal evapotranspiration (ET) ranged from 398 (DN) to 505 mm (IN). There was evidence of root water uptake deeper than 1.5 m. Stomatal conductance was reduced (16%) during water stress, and did not recover in post-anthesis after resuming irrigation. Head yields (capsule + seeds + 7 cm stem) ranged between 3.8 and 4.3 t ha−1; water deficit and short vegetative period both reduced the biomass accumulated, although the effect on yields in these treatments was counterbalanced by a higher harvest index. Early flowering had a detrimental effect on alkaloid concentration in the capsule. Alkaloids yield ranged between 27 and 37 kg ha−1. Water use efficiency (WUE) ranged between 0.78 and 0.96 kg m−3 ET for yield and between 63.4 and 73.7 g m−3 ET for alkaloids. Water stress increased slightly the Water Use Efficiency. A shorter vegetative phase had no effect on WUE for biomass or yield, but decreased the WUE for alkaloids production.  相似文献   

14.
探讨地下水埋深和施氮量对华北地区冬小麦灌浆特性和水氮利用效率影响,以百农4199为试验材料,设置地下水埋深(GW2:2 m,GW3:3 m,GW4:4 m)和施氮量(N300:纯氮量300 kg/hm2,N240:纯氮量240 kg/hm2)2个因素,评估地下水埋深和施氮量对冬小麦灌浆特性、产量形成及水氮利用效率等影响.结果表明:小麦千粒质量与快速增长期时间拐点、平均灌浆速率、灌浆持续时间显著正相关;路径分析表明,地下水埋深主要是通过影响小麦单株籽粒质量、穗数、穗粒数来影响产量的,地下水埋深对产量影响的直接标准化路径系数为0.334(P<0.05),施氮量主要是通过影响单株籽粒质量和穗数来间接影响产量;地下水埋深相同时,N240施氮水平氮肥偏生产力NPP和水分利用效率WUE均显著高于N300施氮水平.故建议地下水埋深大于2 m地区小麦高产和农业绿色可持续发展的施氮量为240 kg/hm2.  相似文献   

15.
Gravel and sand mulch is an effective practice in conserving soil and moisture. However, the proportion of different particle size in this kind of mulch layer is an important factor to be considered in order to obtain optimal results from this practice. From 2005 to 2007, a series of experiments including one with watermelon were conducted in the semi-arid Loess Plateau of northwest China to determine the influence of particle size and its proportion in mulch layer on soil temperature, evapotranspiration, water use efficiency (WUE) and watermelon (Citrullus lanatus L.) yield. The treatments in no-watermelon experiments included particle sizes classified as <0.3, 0.3-1, 1-2, 2-4, 4-6, 6-8 and 8-10 cm mesh size or various rates of 2-6 cm pebble accounting for 0, 10, 20, 30, 40, 50, 60 and 70% with 30% 1-2 cm gravel-sand in mulch layer (as well as correspondingly decreasing sand proportions). The watermelon experiment included three particle sizes, 0.3-1, 1-2 and 2-6 cm. Soil temperature at 8:00 h was highest for the 1-2 cm treatment, and the daily average temperature at 14:00 h was highest for the 0.3-1 cm treatment. Soil temperature decreased with particle size increasing due to porosity enlarging. The relationship between soil temperature and particle size followed a quadratic or cubic curve. Soil temperature was increased by gravel-sand mulch plus plastic film. The increment of soil temperature was larger especially for 1-4 cm particle size. In the gravel-sand mulch layer having different size particles, the greater percentage being of 2-6 cm pebbles, increases porosity, and lowers soil temperature, and causes more evaporation. The results of the watermelon experiment showed that soil moisture before seeding would not affect the yield during the years of using gravel mulch. Watermelon yield and WUE were higher for 1-2 and 0.3-1 cm treatments than 2-6 cm treatments in later experiments during 2006 and 2007. In conclusion, 2-6 cm large size particles would not account for much in gravel-sand mulching layer. It would be better if the percentage of 2-6 cm particles was less than 30%.  相似文献   

16.
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.  相似文献   

17.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   

18.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

19.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

20.
Two alternative in situ area rainwater conservation practices (tied ridging and mulching) were evaluated for four seasons (2004, 2007, 2008 and 2009) at an experimental station in Mekelle, Ethiopia. The objectives were to evaluate the performance of barley as influenced by mulch and tied ridge and to understand the relationships of rainfall and runoff on barley fields. About 16-30% of the seasonal rainfall resulted in runoff when barley was grown without water conservation, whereas the in situ conservation practices resulted in significantly low runoff. Tied ridging and mulching increased the soil water in the root zone by more than 13% when compared with the control. Consequently, grain yield and rainwater use efficiency increased significantly with tied ridging but not with mulching. Tied ridging increased the grain yield over the control at least by 44% during below average rainfall years. Neither mulching nor tied ridging were significantly different from the control when the seasonal rainfall was above average. Since rainfall is often unreliable, we recommend tied ridging as a water conservation technique for loams in the study area in order to mitigate the effect of drought stress in barley. However, tied ridges could be carefully opened when excess water is expected to cause waterlogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号