首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

2.
3.
One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L−1), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m−1, respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m−1 for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m−1. Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl and Na+ in leaves up to 24.0 and 8.5 g kg−1, respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L−1). Leaves of plants irrigated with 240 mmol NaCl L−1 became chlorotic after 30 days exposure. However, concentrations of N, P, Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K+ and Ca2+ were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L−1 of NaCl contained the greatest K+ concentration. Na+/K+ increased with salinity, due to an elevated Na+ content but K+ uptake was also enhanced, which alleviated some Na+ stress. Ca2+ concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species.  相似文献   

4.
Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12 dS m−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC = 1.8 dS m−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC = 4 dS m−1 water after 5 years. Fruit production of the larger trees was 35-50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12 dS m−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.  相似文献   

5.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

6.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

7.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

8.
9.
In arid and semi-arid regions, salinity is a serious and chronic problem for agriculture. A 3-year field experiment in the arid environment of Xinjiang, northwest China, was conducted to study the salinity change in soil resulting from deficit irrigation of cotton with non-saline, moderate saline and high saline water. The salinity profile distribution was also evaluated by an integrated water, salinity, and nitrogen model, ENVIRO-GRO. The simulated and observed salinity distributions matched well. Results indicated that after 3 years of cotton production, the average salinity in the 1.0-m soil profile was 336% and 547% of the original soil profile, respectively, for moderate saline and high saline water irrigation. If the practices continued, the average soil salinity (ECe) in the 1.0-m soil profile would approach a steady level of 1.7, 10.8, and 14.7 dS m−1, respectively, for the treatments receiving irrigation waters of 0.33, 3.62, and 6.71 dS m−1. It was concluded that deficit irrigation of saline water in this region was not sustainable. Model simulation showed that a big flood irrigation after harvest can significantly reduce the salt accumulation in the soil profile, and that this practice was much more efficient for salinity control than applying the same extra amount of water during the growing season.  相似文献   

10.
In 2004 and 2005, the feasibility of agricultural use of saline aquaculture wastewater for irrigation of Jerusalem artichoke and sunflower was conducted in the Laizhou region using saline aquaculture wastewater mixed with brackish groundwater at different ratios. Six treatments with different electrical conductivities (EC) were included in the experiment: CK1 (rainfed), CK2 (irrigation with freshwater, EC of 0.02 dS m−1), and saline aquaculture wastewater (EC of 39.2 dS m−1) mixed with brackish groundwater (EC of 4.4 dS m−1) at volumetric ratios of 1:1, 1:2, 1:3, and 1:4 with corresponding EC of 22.0, 16.1, 13.2, and 11.4 dS m−1. Soil electrical conductivity (ECe) in the saline aquaculture wastewater irrigation treatments was significantly higher (P ≤ 0.05) than that in the rainfed or freshwater irrigation treatments, and the maximum value occurred in the 22.0 dS m−1 treatment. The sodium adsorption ratio (SAR) ranged from 4.1 to 11.7 mmol1/2 L−1/2 and increased with decreasing salinity of irrigation water. The biomass of Jerusalem artichoke significantly decreased (P ≤ 0.05) when irrigated with saline aquaculture wastewater compared to the rainfed or freshwater irrigation treatments; however, the effect of salinity on root biomass was much smaller than the aerial parts. Concomitantly, the highest tuber yield of Jerusalem artichoke occurred in the 11.4 dS m−1 treatment, while the highest seed yield of sunflower occurred in the rainfed treatment. Additionally, nitrogen and phosphorus concentrations of Jerusalem artichoke were significantly higher in the 11.4 dS m−1 treatment than the other treatments. This study demonstrated that properly diluted saline aquaculture wastewater can be used successfully to irrigate Jerusalem artichoke with higher economic yield and nutrient removal, but not sunflower due to the difference in salt tolerance.  相似文献   

11.
Excess salinity in irrigation water reduces sugarcane yield and juice quality. This study was conducted to compare the effect of irrigation with water of 1.3 dS m−1 vs. 3.4 dS m−1 on sugarcane yield and quality, and to evaluate whether an electrostatic conditioning treatment of the water influenced the salt effects. The study was conducted in a commercial field divided into large plots ranging from 1.0 to 1.2 ha in size. Cane and sugar yields were reduced approximately 17% by the 3.4 dS m−1 water compared to the 1.3 dS m−1 water, but juice quality parameters were not affected. Conditioning of the irrigation water using a device called an ‘electrostatic precipitator’ which claimed to affect various water properties had no effect on cane yield, juice quality or soil salinity levels. The detrimental effect of the high salt irrigation water was somewhat less than might be expected, probably due to good late summer rainfall which may have flushed the root zone from the excessive salts.  相似文献   

12.
The effect of supplemental saline (2.5 dS m−1) drip irrigation and black polyethylene mulch on two cultivars of bell peppers (Capsicum annuum L.) was investigated under field conditions using a randomized complete block design with split-split plot restriction. The research included six irrigation treatments (main plots): (i) non-saline irrigation control applied throughout growth (None), (ii) saline irrigation from transplanting until formation of the first fruit set (S1S2), (iii) saline irrigation from transplanting until appearance of the first flower and from first harvest to final harvest (S1S4), (iv) saline irrigation from appearance of the first flower to first harvest (S2S3), (v) saline irrigation from fruit set to final harvest (S3S4), and (vi) saline irrigation throughout growth (All); two mulch treatments (subplots): (i) black mulch and (ii) bare soil; and two bell pepper cultivars (sub-subplots): (i) Early Sunsation and (ii) Red Knight. Production of fully ripened fruits was higher in mulched plants regardless of saline irrigation treatments. In humid areas with non-saline soil, supplemental saline drip irrigation could be used with black polyethylene mulch to save water while maintaining fruit production.  相似文献   

13.
There is increasing pressure to reduce water use and environmental impact associated with open system, soil-less production in simple, plastic greenhouses on the Mediterranean coast. This may force the adoption of re-circulation of nutrient solutions. In south-eastern Spain, irrigation water is mostly from aquifers and has moderate levels of salinity. The adoption of re-circulation using moderately saline water requires detailed information of crop response to salinity, in order to optimise management. The effect of salinity on fruit yield, yield components and fruit quality of tomato grown in soil-less culture in plastic greenhouses in Mediterranean climate conditions was evaluated. Two spring growing periods (experiments 1 and 2) and one long season, autumn to spring growing period (experiment 3) studies were conducted. Two cultivars, ‘Daniela’ (experiment 1) and ‘Boludo’ (experiments 2 and 3), were used. Seven levels of electrical conductivity (EC) in the nutrient solution were compared in experiment 1 (2.5–8.0 dS m−1) and five levels in experiments 2 and 3 (2.5–8.5 dS m−1). Total and marketable yield decreased linearly with increasing salinity above a threshold EC value (ECt). There were only small effects of climate and cultivar on the ECt value for yield. Average threshold EC values for total and marketable fruit yield were, respectively, 3.2 and 3.3 dS m−1. The linear reductions of total and marketable yield with EC above ECt showed significant differences between experiments, the slope varying from 7.2% (autumn to spring period, ‘Boludo’) to 9.9% (spring period, ‘Boludo’) decreases per dS m−1 increase in EC for total yield, and from 8.1% (spring period, ‘Daniela’) to 11.8% (spring period, ‘Boludo’) for marketable yield. The decrease of fresh fruit yield with salinity was mostly due to a linear decrease of the fruit weight of 6.1% per dS m−1 from an ECt of 3.0 dS m−1 for marketable fruits. Reduction in fruit number with salinity made a smaller relative contribution to reduced yield. Blossom-end rot (BER) increased with increasing salinity. There was a higher incidence of BER with spring grown crops, and ‘Boludo’ was more sensitive than ‘Daniela’. Increasing salinity improved various aspects of fruit quality, such as: (i) proportion of ‘Extra’ fruits (high visual quality), (ii) soluble solids content, and (iii) titratable acidity content. However, salinity decreased fruit size, which is a major determinant of price. An economic analysis indicated that the EC threshold value above which the value of fruit production decreased linearly with increasing salinity was 3.3 dS m−1, which was the same as that for marketable yield. In the economic analysis, the value of increased visual fruit quality was offset by reduced yield and smaller fruit size.  相似文献   

14.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

15.
In the spring-summer season of 2005 and 2006, we explored the influence of three fertigation strategies (A-C) on the water and nitrogen use efficiency of semi-closed rockwool culture of greenhouse tomato conducted using saline water (NaCl concentration of 9.5 mol m−3). The strategies under comparison were the following: (A) crop water uptake was compensated by refilling the mixing tank with nutrient solution at full strength (with the concentrations of macronutrients equal or close to the corresponding mean uptake concentrations as determined in previous studies) and the recirculating nutrient solution was flushed out whenever its electrical conductivity (EC) surpassed 4.5 dS m−1 due to the accumulation of NaCl; (B) the refill nutrient solution had a variable EC in order to maintain a target value of 3.0 dS m−1; due to the progressive accumulation of NaCl, the EC and macronutrient concentrations of the refill nutrient solution tended to decrease with time, thus resulting in a progressive nutrient depletion in the recycling water till N-NO3 content dropped below 1.0 mol m−3, when the nutrient solution was replaced; (C) likewise Strategy A, but when EC reached 4.5 dS m−1, crop water uptake was compensated with fresh water only in order to reduce N-NO3 concentration below 1.0 mol m−3 before discharge. In 2005 an open (free-drain) system (Strategy D), where the plants were irrigated with full-strength nutrient solution without drainage water recycling, was also tested in order to verify the possible influence of NaCl accumulation and/or nutrient depletion in the root zone on crop performance. In the semi-closed systems conducted following strategies A, B or C, the nutrient solution was replaced, respectively, 10, 14 and 7 times in 2005, and in 19, 24 and 14 times in 2006, when the cultivation lasted 167 days instead of 84 days in 2005. In both years, there were no important differences in fruit yield and quality among the strategies under investigation. Strategy C produced the best results in terms of water use and drainage, while Strategy B was the most efficient procedure with regard to nitrogen use. In contrast to strategies A and D, the application of strategies B and C minimized nitrogen emissions and also resulted in N-NO3 concentrations in the effluents that were invariably lower than the limit (approximately 1.42 mol m−3) imposed to the N-NO3 concentration of wastewater discharged into surface water by the current legislation associated to the implementation of European Nitrate Directive in Italy.  相似文献   

16.
The aim of the present investigation was to simulate the uptake concentrations (weights of ion per volume of water absorbed) of Na+ and Cl in hydroponic tomato crops as a function of the NaCl concentration in the root zone. An empirical model was calibrated and validated, which can be incorporated into on-line operating decision support systems aimed at optimizing the nutrient supply and minimizing the discharge of drainage solution in tomato crops grown in closed-cycle hydroponic systems. Three experiments were conducted, of which one was carried out to calibrate the model using irrigation water with NaCl concentration ranging from 0 to 14.7 mol m−3 while the other two experiments were commissioned to validate the model within either a low (0.5-2 mol m−3) or a high (1.2-12 mol m−3) concentration range. The model could successfully predict the uptake concentration of Na+, but Cl could not be simulated by this model at external Cl concentrations lower than 10 mol m−3. The results indicate that Na+ is excluded actively and effectively by the tested tomato cultivar even at low external Na+ concentrations, while Cl is readily taken up at low concentrations, particularly during the initial growing stages. Due to the efficient exclusion of Na+ by tomato, the Na+ concentration in the root environment increased rapidly to extremely high levels even when the Na+ concentration in the irrigation water was relatively low. These results indicate that tomato genotypes characterized by high salt-exclusion efficiency, require irrigation water with a very low NaCl concentration, if they are grown in closed hydroponic systems and the drainage water is not flushed periodically. To maintain Na+ at levels lower than 19 mol m−3 in the root zone of the tomato hybrid ‘Formula’ in closed hydroponics, a maximum acceptable Na+ concentration of 0.53 mol m−3 was estimated for the irrigation water.  相似文献   

17.
In many water scarce areas, saline water has been included as an important substitutable resource in agricultural irrigation. It would be of practical use to investigate the effect of stage-specific saline irrigation on yield, fruit quality, and other growth responses of greenhouse tomato, to establish a proper irrigation management strategy for tomato production in these regions. Here, saline irrigations (3.33, 8.33, and 16.67 dS m−1 NaCl solution) were applied during four growth stages of greenhouse tomato (L. esculentum Mill. cv. Zhongza No. 9) grown in the North China Plain, respectively. These include flowering and fruit-bearing stage (stage 1), first cluster fruit expanding stage (stage 2), second cluster fruit expanding stage (stage 3), and harvesting stage (stage 4). Compared with the following three stages, yield loss was most remarkable in stage 1 under all three salinity levels. Under irrigation practices using 3.33 dS m−1 saline water in all four stages, 8.33 dS m−1 saline water in latter three stages, and 16.67 dS m−1 saline water in stage 4, yield reduction was not significant while fruit quality was improved. In conclusion, it is feasible to use stage-specific saline irrigation for tomato production in water scarce areas like North China Plain.  相似文献   

18.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

19.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

20.
Field experiments were conducted for 2 years to investigate the effects of various levels of nitrogen (N) and methods of cotton planting on yield, agronomic efficiency of N (AEN) and water use efficiency (WUE) in cotton irrigated through surface drip irrigation at Bathinda situated in semi-arid region of northwest India. Three levels of N (100, 75 and 50% of recommended N, 75 kg ha−1) were tested under drip irrigation in comparison to 75 kg of N ha−1 in check-basin. The three methods of planting tried were; normal sowing of cotton with row to row spacing of 67.5 cm (NS), normal paired row sowing with row to row spacing of 35 and 100 cm alternately (NP) and dense paired row sowing with row to row spacing of 35 and 55 cm alternately resulting in total number rows and plants to be 1.5 times (DP) than NS and NP. In NS there was one lateral along each row, but in paired sowings there was one lateral between each pair of rows. Consequently the number of laterals and quantity of water applied was 50 and 75% in NP and DP, respectively, as compared with NS in which irrigation water applied was equivalent to check-basin.Drip irrigation under NS resulted in an increase of 258 and 453 kg ha−1 seed cotton yield than check-basin during first and second year, respectively, when same quantity of water and N was applied. Drip irrigation under dense paired sowing (DP) in which the quantity of irrigation water applied was 75% as compared with NS, further increased the yield by 84 and 101 kg ha−1 than NS during first and second year, respectively. Drip irrigation under NP, in which the quantity of water applied and number of laterals used were 50% as compared with drip under NS, resulted in a reduction in seed cotton yield of 257 and 112 kg ha−1 than NS during first and second year, respectively. However, the yield obtained in NP under drip irrigation was equivalent to yield obtained in NS under check-basin during first year but 341 kg ha−1 higher yield was obtained during second year. The decrease in N applied, irrespective of methods of planting, caused a significant decline in seed cotton yield during both the years. Water use efficiency (WUE) under drip irrigation increased from 1.648 to 1.847 and from 0.983 to 1.615 kg ha−1 mm−1 during first and second year, respectively, when the same quantity of N and water was applied. The WUE further increased to 2.125 and 1.788 kg ha−1 mm−1 under DP during first and second year, respectively. The agronomic efficiency of nitrogen was higher in drip than check-basin during both the years when equal N was applied. The WUE decreased with decrease in the rate of N applied under fertigation but reverse was true for AEN. It is evident that DP under drip irrigation resulted in higher seed cotton yield, WUE and AEN than NS and also saved 25% irrigation water as well as cost of laterals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号