首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to apply one strategy of deficit irrigation (DI) to improve the final fruit quality in 10-year-old ‘Lane late’ sweet orange grafted on Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L.). The experiment was carried out over 2 years in an experimental orchard located in Torre Pacheco (Murcia, south-east Spain). The deficit irrigation treatment consisted of the stopping of irrigation in phase III of fruit growth (1st October-28th February). The irrigation cut-off in phase III reduced the midday stem water potential (Ψmd), the plant water status being heavily influenced by rainfall. In both years, the DI treatment did not alter fruit yield although mean fruit weight was slightly reduced. The main effects of DI on the final fruit quality were increases of total soluble solids (TSS) and titratable acidity (TA) and a decrease of juice percentage without altering the final maturity index. Plant water-stress integral (SΨ) was correlated positively with TSS and TA and negatively with juice percentage. In conclusion, a DI strategy could be useful for improving the final content of TSS and the TA, therefore allowing the harvest to be delayed.  相似文献   

2.
The impact that different regulated-deficit irrigation (RDI) treatments exert on a 12-year-old orange orchard (Citrussinensis L. Osbeck, cv. salustiano) was studied from 2004 to 2007. The experiment consisted of a control irrigation treatment which was irrigated at 100% of the crop evapotranspiration (ETc) values for the whole season, and three deficit treatments imposed as a function of the water-stress index (WSI), which is defined as the ratio of the actual volume of water supply to the ETc rate. In our case, these WSI values were 0.75, 0.65, and 0.50, respectively. The stem-water potential at noon (ΨStem) was used as a parameter to estimate the water status of the plant. Yield and fruit quality was evaluated at harvest in each treatment (taking into account the temporal variability of the results due to the climatic characteristics of each of the years of this study) and an overall analysis was made using the whole dataset. Significant differences were found in fruit quality parameters (total soluble solids and titrable acidity), which also showed significant regression coefficients with the values of the integrated stem-water potential. These results led us to conclude that in mature orange trees grown under these conditions, regulated-deficit irrigation has important and significant effects on the final fruit quality, but the effects are not so clear-cut in tree yield, where the differences in the case of reducing a 50% of the crop ETc, were not considered to be statistically significant despite an approximate 10% decrease in fruit yield. A global rescaled distance cluster analysis was performed in order to summarize the main relationships between the variables evaluated and to establish a different correlation matrix. Finally, a classification tree was derived and principal-component analysis was undertaken in order to identify and evaluate the variables which had the strongest effect on the crop response to different irrigation treatments.  相似文献   

3.
The present study examines the need for irrigation in pear trees (Pyrus Communis, cv. ‘Conference’) under low evaporative demand conditions, like in Belgium, in order to maintain a consistent fruit yield and high fruit size. To determine the sensitivity of the pear yield under low evaporative demand conditions three different orchards were monitored. The study shows that a Ψsoil of −60 kPa during shoot growth has no effect on fruit yield but lower Ψsoil values induced a decline in both fruit size and total yield. Just as for arid environments a Ψstem of −1.5 MPa is related to negative yield responses. In dry conditions lower Ψsoil and Ψstem values were observed in root pruned trees compared to not root pruned trees in the same irrigation treatment, however without yield decline. In one orchard a biannual bearing tendency was observed after root pruning. Furthermore intensive Ψsoil measurements show a high variation in Ψsoil between orchards, and within an orchard. This underlines the need for irrigation management on a parcel level and the need for new irrigation scheduling techniques which take the spatial variation in the orchard into account.  相似文献   

4.
The use of digital infrared thermography and thermometry to investigate early crop water stress offers a producer improved management tools to avoid yield declines or to deal with variability in crop water status. This study used canopy temperature data to investigate whether an empirical crop water stress index could be used to monitor spatial and temporal crop water stress. Different irrigation treatment amounts (100%, 67%, 33%, and 0% of full replenishment of soil water to field capacity to a depth of 1.5 m) were applied by a center pivot system to soybean (Glycine max L.) in 2004 and 2005, and to cotton (Gossypium hirsutum L.) in 2007 and 2008. Canopy temperature data from infrared thermography were used to benchmark the relationship between an empirical crop water stress index (CWSIe) and leaf water potential (ΨL) across a block of eight treatment plots (of two replications). There was a significant negative linear correlation between midday ΨL measurements and the CWSIe after soil water differences due to irrigation treatments were well established and during the absence of heavy rainfall. Average seasonal CWSIe values calculated for each plot from temperature measurements made by infrared thermometer thermocouples mounted on a center pivot lateral were inversely related to crop water use with r2 values >0.89 and 0.55 for soybean and cotton, respectively. There was also a significant inverse relationship between the CWSIe and soybean yields in 2004 (r2 = 0.88) and 2005 (r2 = 0.83), and cotton in 2007 (r2 = 0.78). The correlations were not significant in 2008 for cotton. Contour plots of the CWSIe may be used as maps to indicate the spatial variability of within-field crop water stress. These maps may be useful for irrigation scheduling or identifying areas within a field where water stress may impact crop water use and yield.  相似文献   

5.
Over the last two decades, a significant increase in intensively managed olive orchards has occurred in the northwest of Argentina where climatic conditions differ greatly from the Mediterranean Basin. Annual amounts of applied irrigation are generally high due to low rainfall, access to deep ground water, and little information about water use by the crop in the region. The objectives of this study were to: (1) assess the responses of plant growth, yield components, and several physiological parameters to five different irrigation levels and (2) determine an optimum crop coefficient (Kc) for the entire growing season considering both fruit yield and vegetative growth. Five irrigation treatments (Kc = 0.50, 0.70, 0.85, 1.0, 1.15) were employed from late winter to the fall over 2 years in a 6-year-old cv. ‘Manzanilla fina’ olive orchard. Tree canopy volume was approximately 15 m3 with a leaf area of about 40 m2 at the beginning of the experiment. During much of each year, the volumetric soil water content was lower in the Kc = 0.50 treatment than in the other irrigation levels evaluated (Kc = 0.85 and 1.15). Although differences in midday stem water potential (Ψs) were not always apparent between treatments during the first year, there were lower Ψs values in Kc = 0.50 and 0.70 relative to the higher irrigation levels during the second year. Shoot elongation in Kc = 0.50 was about 50% of that in Kc = 1.0 and 1.15 during both years leading to significant differences in the increase of tree canopy volume by the end of the first year. Fruit yield was similar among irrigation levels the first year, but yield reached a maximum value the second year between Kc = 0.70 and 0.85 above which no increase was apparent. The somewhat lower fruit yield values in Kc = 0.50 and 0.70 were associated with decreased fruit number rather than reductions in individual fruit weight. The water productivity on a yield basis (fruit yield per mm of applied irrigation) decreased as irrigation increased in the second year, while similar calculations based on trunk cross-sectional area growth indicated that vegetative growth was proportional to the amount of irrigation. This suggests that the warm climate of northwest Argentina (28° S) can induce excessive vegetative growth when very high irrigation levels are applied. A Kc value of approximately 0.70 over the course of the growing season should be sufficient to maintain both fruit yield and vegetative growth at adequate levels. An evaluation of regulated deficit irrigation strategies for table olives in this region could be beneficial to further reduce irrigation.  相似文献   

6.
Precision irrigation in grapevines could be achieved using physiologically based irrigation scheduling methods. This paper describes an investigation on the effects of three midday stem water potential (midday ΨS) thresholds, imposed from post-setting, over water use, vegetative growth, grape quality and yield of grapevines cv. Cabernet Sauvignon. An experiment was carried out on a vineyard located at the Isla de Maipo, Metropolitana Region, Chile, throughout the 2002/03, 2003/04 and 2004/05 growing seasons. Irrigation treatments consisted in reaching the following midday ΨS thresholds: −0.8 to −0.95 MPa (T1); −1.0 to −1.2 MPa (T2) and −1.25 to −1.4 MPa (T3) from post-setting to harvest. Results showed significant differences in grape quality components among treatments and seasons studied. In average, T3 produced smallest berry diameter (6% reduction compared to T1), high skin to pulp ratio (13% increment compared to T1) and significant increments in soluble solids and anthocyanins. Improvements in grape quality attributes were attributed to mild grapevine water stress due to significant reductions in water application (46% for T2 and 89% for T3 less in average, both compared to T1). This study found significant correlations between midday ΨS and berry quality components, no detrimental effects on yield by treatments were found in this study. This research proposes a suitable physiological index and thresholds to manage RDI and irrigation scheduling on grapevines to achieve high quality grapes on mild water stress conditions.  相似文献   

7.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

8.
Depleting groundwater resources in Indian Punjab call for diversifying from rice to crops with low evapo-transpiration needs and adopting water-saving technologies. Soybean offers a diversification option in coarse- to medium-textured soils. However, its productivity in these soils is constrained by high soil mechanical resistance and high soil temperature during early part of the growing season. These constraints can be alleviated through irrigation, deep tillage and straw mulching. This 3-years field study examines the individual and combined effects of irrigation, deep tillage, and straw mulching regimes on soybean yield and water productivity (WP) in relation to soil texture. Combinations of two irrigation regimes viz., full irrigation (If), and partial irrigation (Ip) in the main plot; two tillage regimes viz., conventional-till (CT)-soil stirring to 0.10 m depth, and deep tillage (DT)-chiseling down to 0.35 m depth followed by CT in the subplot; and two mulch rates viz., 0 (M0) and 6 t ha−1 (M) in the sub-subplot on two soils differing in available water capacity were evaluated.Seed yield was greater in the sandy loam than in the loamy sand reflecting the effects of available water capacity. Irrigation effects were greater on loamy sand (40%) than on sandy loam (5%) soil. Deep tillage benefits were also more on loamy sand (14%) compared to sandy loam (5%) soil. Yield gains with mulching were comparable on the two soils (19%). An evaluation of interaction effects showed that mulching response was slightly more in Ip (20%) than in If regimes (17%) in the sandy loam; while in the loamy sand, mulching gains were comparable (18-19%) in both irrigation regimes. Benefits of deep tillage in the loamy sand soil were more in Ip (20%) than in If regimes (17%). Deep tillage and straw mulching enhanced WP (ratio of seed yield/water use) from 1.39 to 1.97 kg ha−1 mm−1 in Ip regime, and from 1.87 to 2.33 kg ha−1 mm−1 in If regime in the loamy sand soil. These effects on WP were less in the sandy loam soil with greater available water capacity. Yield and WP gains are ascribed to deeper and denser rooting due to moderation of soil temperature and water conservation with straw mulching and tillage-induced reduction in soil mechanical resistance. Root mass in CTM0, CTM, DTM0 and DTM was 2.79, 5.88, 5.34 and 5.58 mg cm−2 at pod-filling in the loamy sand soil. Comparable yield responses to deep tillage or mulching in the loamy sand soil suggest that either of the options, depending on their cost and availability considerations, can be employed for improving soybean yield and water productivity.  相似文献   

9.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

10.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

11.
Tieguanyin Oolong tea (Camellia sinensis (L.) O. Kuntze) is a name brand important commodity for Anxi county, Fujian province in China. Four-year-old tea plants at a tea plantation in Anxi were subjected to six different irrigation treatments (i.e. 5, 10, 15, 20, and 25 d irrigation intervals for T1 to T5 with a rate of 3.5 kg water per plant, plus a non-irrigated control). After 50 d of irrigation treatments, leaf water potential was −1.70, −2.34, −2.48, −2.89, −3.55, and −4.92 MPa for treatment T1, T2, T3, T4, T5, and control, respectively. Leaf biomass yield increased by 32.8%, 21.9%, and 21.3% for T1, T2, and T3, respectively, compared to control. The net photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) decreased with irrigation interval increasing. Tea polyphenol (TP) and free amino acid (AA) decreased when the irrigation intervals were increased, but caffeine (CA) content apparently increased as the irrigation intervals were increased. To balance irrigation water demand and tea yield and quality, it is recommended that the irrigation interval should be set at 10 d with a rate of 3.5 kg water per plant for the optimal production in Anxi, Fujian province of China.  相似文献   

12.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

13.
Persimmon tree (Diospyros kaki L.f.) is a deciduous fruit tree included in the so-called group of minor fruit tree species. Worldwide, it is not widely grown but, nowadays, Kaki culture is of some importance in the south-east of Spain because of the high fruit commercial value. Currently, neither it is known about Kaki trees water needs, nor crop responses to the irrigation regime. The objective of the present research was to assess the feasibility of using maximum diurnal trunk shrinkage (MDS) as a plant water stress indicator for Kaki trees. During two drought cycles, in trees under either full or deficit irrigation, the MDS obtained by means of LVDT sensors was compared with a reference indicator of fruit trees water status, the midday stem water potential (Ψstem). In addition, stomatal conductance and fruit diameter variations were also followed. As water restrictions began, there was an immediate increase in MDS, in correspondence with a decrease in Ψstem. Pooling data from both drought cycles and irrigation regimes, MDS and Ψstem were linearly correlated (r2 = 0.77***). The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was three times higher than for Ψstem; average coefficient of variation of 14% and 38% for Ψstem and MDS, respectively. Overall, results reported indicated that MDS is a sensitive indicator of Kaki water status and it can be further used as an irrigation scheduling indicator for optimum irrigation management of this crop. However, the large MDS tree-to-tree variability should be taken into account when selecting the number of trees to monitor within an orchard.  相似文献   

14.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

15.
16.
The increasing cost and scarcity of water for irrigation is placing pressure on Australian dairy farmers to utilize water more efficiently, and as result, water use efficiency (WUE) of forages is becoming an important criterion for sustainable dairy production. This study was conducted to identify more water use efficient forage species than the dominant dairy forage, perennial ryegrass (Lolium perenne L.). Seventeen annual forage species were investigated under optimum irrigation (I1) and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied to the optimal level), over 3 years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Forages with the highest yield generally had the highest WUEt (total yield/evapotranspiration). Under optimal irrigation, there was a three-fold difference in mean annual WUEt between forages, with maize (Zea mays L.) having the highest (42.9 kg ha−1 mm−1) and cowpea (Vigna unguiculata (L.) Walp.) the lowest (13.5 kg ha−1 mm−1), with 11 of the forage species having a greater WUEt than perennial ryegrass. The ‘harvested’ forages maize, wheat, triticale (Triticosecale rimpaui Wittm.) and maple pea (Pisum sativium L.) generally had higher mean WUEt (26.7-42.9 kg ha−1 mm−1) than the remaining forages which were defoliated multiple times to simulate grazing (13.5-30.1 kg ha−1 mm−1). The reduction in annual WUEt in response to deficit irrigation was greatest for the warm season forages with up to 30% reduction for maize, while most of the cool season annuals were not significantly affected by deficit irrigation at the levels imposed. In order to maximize WUEt of any forage, it is necessary to maximize yield, as there is a strong positive relationship between yield and WUEt. However, while WUEt is an important criterion for choosing dairy forages, it is only one factor in a complex system. Choice of forages must be considered on a whole farm basis and include consideration of yield, nutritive value, cost of production and risk.  相似文献   

17.
The effect of moisture tension and doses of phosphate fertilization on yield components of sweet corn A-7573 (Zea mays L.) hybrid, in a Calcium Vertisol were evaluated. Four levels of soil moisture tension, ranging from −5 to −80 kPa, and three levels of phosphate fertilization: 60, 80, and 100 kg ha−1 were studied. In order to evaluate the effect of the experimental treatments, plant growth, development, and yield were monitored. Treatments were distributed using the randomized complete block design (RCB) for divided plots of experimental units. ANOVA analysis indicated that the effects on more humid treatments (−5 and −30 kPa) were statistically equivalent, however were different from the effect of −55 kPa treatment, which in turn was statistically different from the effect of the driest treatment (p ≤ 0.01). On the other hand, 80 and 100 kg ha−1 phosphate doses were statistically equal among them, but different from the lowest dose in almost all cases (p ≤ 0.01), which suggests that 80 kg ha−1 P2O5 application is sufficient to satisfy the nutritional requirements of the A-7573 hybrid. Both stress caused by the lack of water and the one due to deficiency of phosphorus affect all variables under study, however none of them showed interaction between irrigation and fertilization treatments. Irrigation of sweet corn crop is advisable when soil moisture tension grows to −30 kPa at 0-30 cm depth and to apply a phosphate fertilization dose of 80 kg ha−1 is also recommended; using this management, sweet corn expected average length and fresh weight are 30.8 cm and 298 g, respectively, and their average yield is around 16.5 t ha−1. In accordance with regression equations obtained, the maximum values in the evaluated response variables are obtained for a rank from −14.4 to −22.2 kPa in soil moisture tension. The greater efficiency in the use of irrigation water for sweet corn was of 36 kg ha−1 for every millimetre laminate of watering applied, found in the −30 kPa treatment of soil moisture tension.  相似文献   

18.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

19.
Pomegranate (Punica granatum L.) is a drought-hardy crop, suited to arid and semi-arid regions, where the use of marginal water for agriculture is on the rise. The use of saline water in irrigation affects various biochemical processes. For a number of crops, yields have been shown to decrease linearly with evapotranspiration (ET) when grown in salt-stressed environments. In the case of pomegranate, little research has been conducted regarding the effect of salt stress. Our study focused on the responses of ET, crop coefficient (Kc) and growth in pomegranate irrigated with saline water. Experiments were conducted using lysimeters with two varieties of pomegranate, P. granatum L. vars. Wonderful and SP-2. The plants were grown with irrigation water having an electrical conductivity (ECiw) of 0.8, 1.4, 3.3, 4.8 and 8 dS m−1. Plants were irrigated with 120% of average lysimeter-measured ET. Seasonal variation in ET, crop coefficient (Kc) and growth were recorded. Variation in daily ET was observed 1 month after initiation of the treatments. While significant seasonal ET variation was observed for the EC-0.8 treatment, it remained more stable for the EC-8 treatment. Salinity treatment had a significant effect on both daily ET (F = 131, p < 0.01) and total ET (F = 112.68, p = 0.001). Furthermore, the electrical conductivity of the drainage water (ECdw) in the EC-8 treatment was five times higher than that of the EC-0.8 treatment in the peak season. Fitting the relative ET (ETr) to the Maas and Hoffman salinity yield response function showed a 10% decrease in ET per unit increase in electrical conductivity of the saturated paste extract (ECe) with a threshold of 1 dS m−1. If these parameters hold true in the case of mature pomegranate trees, the pomegranate should be listed as a moderately sensitive crop rather than a moderately tolerant one. Fitting 30-day interval ETr data to the Maas and Hoffman salinity yield response function showed a reduction in the slope as the season progressed. Thus using a constant slope in various models is questionable when studying crop-salinity interactions. In addition, both of the varieties showed similar responses under salt stress. Moreover, the calculated value of Kc is applicable for irrigation scheduling in young pomegranate orchards using irrigation water with various salinities.  相似文献   

20.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号