首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
In semi-arid areas, crop growth is greatly limited by water. Amount of available water in soil can be increased by surface mulching and other soil management practices. Field experiments were conducted in 2005 and 2006 at Gaolan, Gansu, China, to determine the influence of ridge and furrow rainfall harvesting system (RFRHS), surface mulching and supplementary irrigation (SI) in various combinations on rainwater harvesting, amount of moisture in soil, water use efficiency (WUE), biomass yield of sweet sorghum (Sorghum bicolour L.) and seed yield of maize (Zea mays L.). In conventional fields without RFRHS, gravel-sand mulching produced higher biomass yield than plastic-mulching or straw-mulching. In plastic-mulched fields, an increasing amount of supplemental irrigation was needed to improve crop yield. There was no effect of RFRHS without plastic-covered ridge on rainwater harvesting when natural precipitation was less than 5 mm per event. This was due to little runoff of rainwater from frequent low precipitation showers, and most of the harvested rainwater gathered at the soil surface is lost to evaporation. In the RFRHS, crop yield and WUE were higher with plastic-covered ridges than bare ridges, and also higher with gravel-sand-mulched furrows than bare furrows in most cases, or straw-mulched furrows in some cases. This was most likely due to decreased evaporation with plastic or gravel-sand mulch. In the RFRHS with plastic-covered ridges and gravel-sand-mulched furrows, application of 30 mm supplemental irrigation produced the highest yield and WUE for sweet sorghum and maize in most cases. In conclusion, the findings suggested the integrated use of RFRHS, mulching and supplementary irrigation to improve rainwater availability for high sustainable crop yield. However, the high additional costs of supplemental irrigation and construction of RFRHS for rainwater harvesting need to be considered before using these practices on a commercial scale.  相似文献   

2.
To ensure sustainable agricultural water use in water shortage regions, practices of deficit irrigation should be adopted. This study investigated the performance of winter wheat (Triticum aestivum L.) under limited water supply from 2005 to 2011, a six-season field test on the North China Plain. The test was comprised of four treatments: rain-fed, single irrigation applied at sowing to obtain a good level of soil moisture at the start of crop growth (I1s), single irrigation applied during recovery to jointing (I1r), and full irrigation supplied as three irrigations (control, I3). The results showed that grain yield was significantly correlated with rainfall before heading and with evapotranspiration (ET) after heading (P < 0.01) under rain-fed conditions. The average contribution of soil water stored before sowing to seasonal ET was 90, 103, and 145 mm for rain-fed, I1s, and I1r, respectively, during the six seasons. A smaller root length density (RLD), which restricted utilization of deep soil water by the crop, was one of the reasons for the lower yield with rain-fed and I1s treatments compared with the I1r treatment in dry seasons. The results also showed that the limited irrigation applied from recovery to jointing stage (Treatment I1r) significantly promoted vegetative growth and more efficient soil water use during the reproductive (post-heading) stage, resulting in a 21.6 % yield increase compared with that of the I1s treatment. And although the average yield of the I1r treatment was 14 % lower than that of the full irrigation treatment, seasonal irrigation was reduced by 120–140 mm. With smaller penalties in yield and a larger reduction in applied irrigation, I1r could be considered a feasible irrigation practice that could be used in the NCP for conservation of groundwater resources.  相似文献   

3.
Data is presented comparing infiltration of irrigation and rain water to potato crops planted in ridges and beds in East Anglia, UK. An automatic soil water station (ASWS) was used to monitor soil water content and potential in the two cultivation systems. The ASWS data indicated that most of the water bypassed the potatoes planted in ridges as irrigation water applied to the crop from a boom irrigator was shed off the ridges infiltrating in the furrows. This was due to the water repellent nature of the sandy soil and meant that the irrigation water bypassed the potatoes. A soil water deficit built up in the core of the ridge as the crop grew and was not replenished by irrigations. A second early potato crop planted in beds was more successful at capturing water as the flat bed increased water infiltration around the crop. This has major implications for cultivation practice, scab control and crop water management. Instruments measuring soil water potential, content, temperature and rainfall were connected to a data logger powered by a solar panel and proved a successful way of monitoring infiltration. Hourly data was collected so that a high temporal resolution data set could be constructed in order to increase conceptual understanding of hydrological processes at a scale appropriate to the crop.  相似文献   

4.
基于影像与坡度数据融合的梯田田块分割方法   总被引:1,自引:0,他引:1  
梯田在很大程度上开发了坡耕地的农业生长潜力,具有蓄水、保土作用。由于梯田数量、面积等分布信息较难准确获得,使其定量研究难以深入展开。随着无人机技术的不断发展,高精度梯田地形信息的获取成为可能。本文基于无人机正射影像并结合坡度数据,通过Canny边缘检测算子对梯田的粗轮廓进行提取,结合梯田的结构特性,对梯田中的伪边缘进行剔除;再通过对梯田边缘强度叠加和边缘连接;最后利用区域生长算法对梯田进行分割。该方法有效解决了梯田形状不规则、田面堆积物干扰、图像光谱特征复杂等问题。与手工标注的梯田样区田块数据的对比结果表明,本文算法对梯田区的提取总精度可达84.9%,可为梯田区的快速制图提供解决方案。  相似文献   

5.
Increasing water and fertilizer productivity stands as a relevant challenge for sustainable agriculture. Alternate furrow irrigation and surface fertigation have long been identified as water and fertilizer conserving techniques in agricultural lands. The objective of this study was to simulate water flow and fertilizer transport in the soil surface and in the soil profile for variable and fixed alternate furrow fertigation and for conventional furrow fertigation. An experimental data set was used to calibrate and validate two simulation models: a 1D surface fertigation model and the 2D subsurface water and solute transfer model HYDRUS-2D. Both models were combined to simulate the fertigation process in furrow irrigation. The surface fertigation model could successfully simulate runoff discharge and nitrate concentration for all irrigation treatments. Six soil hydraulic and solute transport parameters were inversely estimated using the Levenberg–Marquardt optimization technique. The outcome of this process calibrated HYDRUS-2D to the observed field data. HYDRUS-2D was run in validation mode, simulating water content and nitrate concentration in the soil profiles of the wet furrows, ridges and dry furrows at the upstream, middle and downstream parts of the experimental field. This model produced adequate agreement between measured and predicted soil water content and nitrate concentration. The combined model stands as a valuable tool to better design and manage fertigation in alternate and conventional furrow irrigation.  相似文献   

6.
This study was designed to investigate the frequency and amount of irrigation needed for maize in westerń Nigeria. The investigation indicated that about 330 mm of water either from irrigation or from well distributed rainfall is sufficient to produce a good crop of maize utilizing an irrigation frequency of 7 days. For good maize yields, soil moisture in the root zone should be maintained at a high level throughout the growing period. This avoids moisture stress and permits easy nutrient uptake by the plant, resulting in higher yields. Crop water use efficiency increased as the soil moisture level increased. A moisture level of approximately 70% of field capacity was sufficient to produce a good yield.  相似文献   

7.
覆膜方式对不同生态区大豆产量和水分利用效率的影响   总被引:2,自引:0,他引:2  
全膜微垄沟播种植技术是在全膜双垄沟播技术的基础上创新研发的一种集覆盖抑蒸、垄面集雨、垄沟种植为一体的新型地膜覆盖技术。【目的】明确西北半干旱雨养区地膜覆盖条件下旱地大豆在不同生态区产量的差异。【方法】于2014—2016年进行大田定位试验,以露地无覆盖(CK)为对照,设置了3种覆膜方式,分别为全膜微垄沟播(T1)、全膜双垄沟播(T2)、全膜覆土穴播(T3),研究半湿润偏旱区、半干旱区、半干旱偏旱区3种不同生态区地膜覆盖对大豆产量及水分利用效率的影响。【结果】与CK相比,在3个生态区均以T1处理产量最高,T2处理次之,T3处理最低;其中全膜微垄沟播不同生态区比较:半湿润偏旱区>半干旱区>半干旱偏旱区,分别较露地无覆盖CK增产58.5%、78.1%和95.3%;水分利用效率分别较CK提高65.9%、57.6%和56.1%。尤其在年降雨量500~600 mm生态区全膜微垄沟播增产效应最明显,平均产量达到4 318.2 kg/hm2,最高达到4 353.3 kg/hm2,较CK增产58.5%。【结论】大豆全膜微垄沟播种植技术在西北半干旱雨养区,增产效果明显,其推广应用可有效提高该区降水资源的高效利用,实现旱作雨养区大豆稳产高产。  相似文献   

8.
To improve water saving and conservation in irrigated agriculture, a range of field evaluation experiments was carried out with various furrow irrigation treatments in cotton fields to estimate the possibilities of improving furrow irrigation performances under conditions of Central Fergana Valley, Uzbekistan. The research consisted in comparing surge and continuous-flow in long furrows and adopting alternate-furrow irrigation. The best results were achieved with surge-flow irrigation applied to alternate furrows. Field data allowed the calibration of a surface irrigation model that was used to identify alternative management issues. Results identified the need to better adjust inflow rates to soil infiltration conditions, cut-off times to the soil water deficits and improving irrigation scheduling. The best irrigation water productivity (0.61 kg m−3) was achieved with surge-flow on alternate furrows, which reduced irrigation water use by 44% (390 mm) and led to high application efficiency, near 85%. Results demonstrated the possibility for applying deficit irrigation in this region.  相似文献   

9.
北部生态系统生产力模拟(BEPS,Boreal Ecosystem Productivity Simulator)模型能够模拟不同生态系统碳水循环过程,并通过气孔导度将二者有机地结合,在土壤水分模拟上具有更大的优势。为了使BEPS模型适用于较小空间尺度的雨养冬小麦农田生态系统的土壤水分模拟,根据冬小麦的降水截留过程、冠层的辐射传输过程、根系分布规律和区域土壤水文参数的获取方法对BEPS模型的水平衡模块进行参数方案调整。在此基础上,基于实现BEPS模型与遥感反演的农田土壤水分数据同化的目的,利用经上述调整方案后的BEPS模型,对郑州农业气象试验站2011—2015年冬小麦生长季的农田土壤水分进行动态模拟,并用观测数据进行验证。结果表明,调整后的BEPS模型能够较好地模拟雨养冬小麦农田土壤水分及动态变化,决定系数R2可达0.70以上,平均相对误差MRE总体低于25.0%,但对底层模拟能力较差;在以旬为步长条件下,拔节前模拟效果优于拔节后;土壤水文参数是影响模型模拟土壤水分垂直交换和分布的主要因素,可通过优化进一步提高土壤水分模拟能力。  相似文献   

10.
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly different from the natural or control treatments. The furrow and sand column treatments significantly increased the water application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments. Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural land is limited. Received: 19 October 1998  相似文献   

11.
A study was conducted in peninsular India in a predominantly agricultural watershed treated with soil and water conservation measures such as diversion drains and staggered contour trenches in nonarable land, terraces of trapezoidal cross section with graded channel on the upstream side (locally termed as graded bund) and stone checks in arable lands and rockfill dams, archweir and nala bund (a local term used for earthen embankment across the drainage channel) across the gully. Hydrological analysis has revealed that integrated management of land and water resources has consistently improved the groundwater regime. Surface runoff from the treated forest and agricultural catchment were only 27.4 and 57.4% of the untreated agricultural catchment, reflecting in high infiltration of rain water due to enhanced opportunity time. Consequently, water levels in the open wells rose by 0.5 to 1.0 m, thereby increasing the area irrigated by the wells by 172% when compared to the preproject period, which in turn improved crop yields by 70%. Hypssometric analysis indicated that water surface levels do not follow the trend of land surface levels due to the nature of the underground geological formation.  相似文献   

12.
不同沟灌方式下夏玉米棵间蒸发试验   总被引:5,自引:0,他引:5  
采用常规沟灌和交替隔沟灌技术,研究了不同水分处理(水分控制下限为田间持水率的80%、70%、60%)夏玉米的棵间蒸发。结果表明:常规沟灌的灌后蒸发和全生育期棵间蒸发量均大于交替隔沟灌,灌水后短期内由于表层土壤含水率较高,土壤蒸发较大;在满足作物蒸腾耗水的基础上,交替隔沟灌减小了灌溉湿润面积而减小无效蒸发耗水;不同沟灌方式下土壤蒸发与表层土壤含水率呈明显的脉冲波动变化,而深层土壤含水率波动较弱;表层土壤含水率和叶面积指数对棵间蒸发影响明显,二者与相对土面蒸发强度均有良好的指数函数关系。水分下限控制合适,交替隔沟灌棵间蒸发与蒸腾耗水明显降低,是夏玉米适宜的灌水方式。  相似文献   

13.
Water deficits and unusually warm soil temperatures can adversely affect conventional ridge sown systems. Increasingly serious water and temperature issues associated with global climate change may be problematic in the future, particularly in semiarid regions. This study explored the soil water and crop yield benefits of switching the sowing location of corn from ridges to furrows. Experiments were conducted over three years. Corn was grown in shallow furrow (SF) and deep furrow (DF) sown treatments until the V8 stage (eight visible leaf collars). New ridges were then built over the existing furrows. Grain yield was found to be higher in the SF and DF sown treatments than in a conventional ridge sown treatment (CR), especially in drought years. Switching sowing position from ridge to furrow could increase corn yield, directly, by improving soil moisture early in the growing season and, indirectly, by stimulating the growth of resource-capturing organs (e.g., leaves and roots). This simple and efficient approach to crop production in semiarid climates may be practical for the management of numerous agricultural systems, particularly those that are resource-limited, with greater vulnerability to the effects of global climate change.  相似文献   

14.
The effects of supplemental irrigation and irrigation practices on soil water storage and barley crop yield were studied for a crust-forming soil at the University of Jordan Research Station near Al-Muwaqqar village during the 1996/97 growing season. An amount of 0.0, 48.9, 73.3, 122.2 and 167 mm supplemental irrigation water were applied. The 48.9, 73.3 and 122.2 mm applications were applied through surface irrigation into furrows with blocked ends, and the 0.0 and 167 mm applications via sprinkler irrigation. The greatest water infiltration and subsequent soil storage was achieved with the 122.2 mm application followed by the 73.3 mm irrigation, both surface applied. Application efficiency (the fraction of applied water that infiltrated into the soil and stored in the 600 mm soil profile) and soil water storage associated with supplemental blocked furrow irrigation was significantly greater than with supplemental sprinkler irrigation. For arid zone soil, which has little or no structural stability, application of supplemental irrigation water via short, blocked-end furrows prevents runoff and increases the opportunity time for infiltration, thereby increasing the amount of applied water that is infiltrated into the soil and stored in the soil profile. Supplemental irrigation, applied by a low-rate sprinkler system, was not as effective because of the low infiltration rates that resulted from the development of a surface throttle due to dispersion of soil aggregates at the soil surface. The differences in stored water had a significant effect on grain and straw yields of barley. Without supplemental irrigation, barley grain and straw yields were zero in natural rainfall cultivation with a total rainfall of 136.5 mm. Barley yields in the control treatment, with a 167 mm supplemental sprinkler irrigation were low being 0.19 and 1.09 ton/ha of barley grain and straw, respectively. Supplemental irrigation through blocked-end furrows increased barley grain and straw yields significantly compared with supplemental sprinkler irrigation to a maximum of 0.59 and 1.8 ton/ha, respectively. The improvement coming from the increased water storage associated with furrows. Since irrigation water is very limited if available, farmers are encouraged to form such furrows for reducing runoff from rainfall thereby increasing the amount of water available for forage and field crop production.  相似文献   

15.
Large areas of the world's bunded rainfed lowland ricelands could be planted to a pre-rice crop if waterlogging damage during the early wet season is prevented. To build understanding necessary to develop effective field drainage practices for pre-rice crops, pot and field studies were undertaken on a Typic Tropaquept lowland rice soil in the Cagayan Valley, Philippines. The objective of the studies was to quantify effects of excessive moisture on mungbeans (Vigna radiata (L.) Wilczek) encountering variable regimes of duration and elevation of water table height in the root zone during a shortterm waterlogging event. Small differences in level and duration of the root zone water table markedly affected plant performance. Yields were reduced by 40–100% when the water table level reached the soil surface for 6 days compared with the unstressed treatment, but were reduced by only 12–17% when the water level was 5 cm below the surface for the same time period. Regression analysis revealed a 4% reduction in yield per centimetre increase in water table level between 5 cm below to 5 cm above the soil surface during the vegetative stage, and a 6.5% reduction per centimetre during the reproductive stage. Field experiments evaluated two prospective surface drainage techniques that farmers could employ to elevate the crop above the zone of saturation during waterlogging events. Planting in furrows, and subsequently hilling up (HU) to create ridges was unsuccessful in improving plant performance (as the base of the plant was not elevated). Planting on 25 cm high ridges formed by a plow dramatically improved growth and yield of mungbean ( ≥ 360% advantage compared with the other treatments) when subjected to a range of waterlogging stress events. Standing water occurred for 5–7 days on the soil surface of HU, broadcast seeded (B), and drilled (D) treatments, but was 56 6 cbelow the base of the plants in the ridge treatment during the two flooding events. The ridging method was observed to be effective for farm-scale use in cultivating pre-rice mungbeans with either animal or tractor power.  相似文献   

16.
不同灌水量对南疆棉花墒情及长势的影响研究   总被引:2,自引:0,他引:2  
通过棉花膜下滴灌大田试验,研究了不同灌水量情况下作物长势与产量影响及土壤墒情变化与分布规律的影响。试验共设了3 300、3 000、2 700、2 400m3/hm2等不同灌溉定额的处理,在各处理试验小区内装土壤墒情传感,并其传感器探头埋在地下10、20、40cm处实时监测不同层面土壤含水量和温度变化,以及同时在相应处取土样采用烘干法测土壤含水率和田间持水量。结果表明:3 300、3 000m3/hm2灌溉定额下,作物长势、土壤含水率和温度变化规律比较好,并与产量的相关性显著最佳状态,灌溉定额对土壤水分与温度灌水前后和灌水周期内变化的影响有明显显著。  相似文献   

17.
【目的】探究冬小麦适宜的计划湿润层深度和土壤含水率控制下限的组合模式,为冬小麦田间用水管理及自动灌溉控制决策提供理论依据。【方法】以冬小麦为研究对象,采用大田试验,设置3个土壤含水率控制下限(L:40%,M:50%,H:60%)和3个计划湿润层深度(60、80、100 cm),共9个处理(T60L、T60M、T60H、T80L、T80M、T80H、T100L、T100M、T100H),研究了不同计划湿润层深度与土壤含水率控制下限对华北地区冬小麦生长发育和水分利用的影响。【结果】计划湿润层深度及土壤含水率控制下限的不同改变了处理间灌水定额及灌水次数,计划湿润层深度过高或土壤含水率控制下限过低均不利于冬小麦植株的生长发育。随着计划湿润层深度(60~100 cm)和土壤含水率控制下限(40%~60%)的增大,冬小麦花前及花后的干物质累积量呈先增大后减小的趋势。产量随土壤含水率控制下限增高呈增加趋势,当计划湿润层深度为80 cm时,产量相对最高,同时耗水量也越多,而计划湿润层深度为60 cm时耗水量最少。计划湿润层深度越低,土壤含水率控制下限越高,冬小麦水分利用效率则越高。T60H处理的水分利用效率最大,为19.96 kg/(hm2·mm),比最小值T100L大21.0%。【结论】本试验条件下,计划湿润层深度为60 cm,土壤含水率控制下限设置为土壤有效含水率的60%时,冬小麦节水高产效果相对最优。  相似文献   

18.
[目的]确定大田黄瓜最适宜的灌溉频率和灌水量.[方法]试验于2018年在华北水利水电大学农业高效用水试验场进行,以20 cm标准蒸发皿的累积蒸发量(E20)作为灌水依据,灌溉处理分为2个灌溉间隔(I1:3 d;I2:6 d)和3种水面蒸发系数(K1:0.5;K2:0.7;K3:0.9),共6个处理,对黄瓜耗水特性、产量...  相似文献   

19.
The salinity in the root zone increases with the application of relatively saline groundwater. Therefore, a limited water supply coupled with high pumping cost and salinity hazards, makes it more important than ever that irrigation water be used efficiently and judiciously. In the present study, farmer's practices of irrigation application methods (Field 1) were compared with the water saving techniques (Field 2) for crop yield and salinization for two years with maize–wheat–dhanicha cropping pattern. For maize crop, regular furrow method of irrigation was used in Field 1 and alternate furrow method of irrigation was used in Field 2. For wheat experiments, basin irrigation method of water application was compared with bed and furrow method. For dhanicha, basin irrigation was applied in both the fields. The results showed that about 36% water was saved by applying irrigation water in alternate furrows in each season without compromising the maize crop yield. The salt accumulation in root zone in alternate furrow field was less than that in regular furrow field. The salinity level near the surface increased substantially in both the fields. The water saving in wheat crop under bed and furrow was 9–12% in both seasons. The salinization process in both fields during wheat crop was almost same except redistribution of salts throughout the root zone in basin field of wheat. The salinity developed in root zone during two major growing seasons was leached in monsoon.  相似文献   

20.
节水灌溉的土壤水分控制标准问题研究   总被引:5,自引:0,他引:5  
农田土壤水分散失是在二个表面上进行的,一是土壤表面称之为蒸发,另外是作物表面称之为蒸腾。两者均与土壤水分呈线性相关,即随着土壤水分增大而增大。但土壤水分与光合速率关系研究表明,当土壤水分低于65~69%田持时,随着土壤水分增大光合速率增大,若土壤水分高于65~69%田持时,随着土壤水分增大光合速率降低。光合作用对土壤水分有一阈值反应。这一阈值可考虑为节水灌溉的田间土壤水分控制标准  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号