首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Grapevines are extensively grown in the semiarid and arid regions, but little information is available on the variability of energy partitioning and resistance parameters for the vineyard. To address this question, an eddy covariance system was applied to measure energy balance over a vineyard in northwest China during 2005-2006. Result indicated that 2-year average Bowen ratio (β) of vineyard was 1.0, canopy resistance (rc) 289.3 s m−1, aerodynamic resistance (ra) 9.7 s m−1 and climatological resistance (ri) 117 s m−1. This implied that the annual energy was split almost equally between sensible heat and latent heat. Compared to the corresponding values in other ecosystems reported by Wilson et al. [Wilson, K.B., Baldocchi, D.D., Aubinet, M., Berbigier, P., Bernhofer, C., Dolman, H., Falge, E., Field, C., Goldstein, A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B.E., Lindroth, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., Vesala, T., Wofsy, S., 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resource Research 38, 1294-1305.], the vineyard had a higher β, rc and ri than deciduous forests, corn and soybean, and grassland. Such difference was mainly attributed to (1) serious water stress in 2005, which resulted in a greater rc up to 364.4 s m−1; (2) sparse canopy with row spacing of 2.9 m and plant spacing of 1.8 m; (3) warm-dry climate and high attitude (1581 m) along with higher ri and lower psychrometer (54 Pa K−1) in the arid region of northwest China. These characters of vineyard revealed varying process of energy partitioning and surface resistance, and provided a scientific basis in understanding and modeling water and energy balance for the vineyard in the semiarid and arid regions.  相似文献   

2.
A reexamination of the crop water stress index   总被引:18,自引:0,他引:18  
Summary Hand-held infrared radiometers, developed during the past decade, have extended the measurement of plant canopy temperatures from individual leaves to entire plant canopies. Canopy temperatures are determined by the water status of the plants and by ambient meteorological conditions. The crop water stress index (CWSI) combines these factors and yields a measure of plant water stress. Two forms of the index have been proposed, an empirical approach as reported by Idso et al. (1981), and a theoretical approach reported by Jackson et al. (1981). Because it is simple and requires only three variables to be measured, the empirical approach has received much attention in the literature. It has, however received some criticism concerning its inability to account for temperature changes due to radiation and windspeed. The theoretical method is more complicated in that it requires these two additional variables to be measured, and the evaluation of an aerodynamic resistance, but it will account for differences in radiation and windspeed. This report reexamines the theoretical approach and proposes a method for estimating an aerodynamic resistance applicable to a plant canopy. A brief history of plant temperature measurements is given and the theoretical basis for the CWSI reviewed.  相似文献   

3.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

4.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

5.
Evaporation and canopy conductance of citrus orchards   总被引:2,自引:0,他引:2  
Evaporation of citrus orchards has been widely studied, but differences in methodologies and management conditions have led to conflicting results, mainly due to differences in ground cover and soil evaporation. In this work the contribution of transpiration and soil evaporation has been studied in a drip-irrigated, clean cultivated mandarin (Citrus reticulata Blanco) orchard on a sandy soil in Southern Spain. Evapotranspiration (ET) was measured using eddy covariance while soil evaporation was determined with microlysimeters, during August 2000 and May 2001. Average ET was 2.6 mm day−1 in August and 2.1 mm day−1 in May. The crop coefficient (Kc) was 0.44 and 0.43 in 2000 and 2001, respectively. The coefficient of transpiration (Kp) was 0.30 in 2000 and 0.25 in 2001. The daily bulk canopy conductance (gc) ranged from 1.2 to 2.2 (average 1.8) mm s−1 in 2000 and from 1.2 to 2.7 (average 1.9) mm s−1 in 2001. A model of daily canopy conductance as a function of intercepted radiation was derived and applied to calculate the transpiration of orchards with different values of ground cover (GC). The ratio of transpiration over reference ET of mandarin orchards is linearly related to ground cover (Kp = 0.7 GC). Calculated crop coefficients agree with values suggested by FAO for mature orchards (around 0.65) but are substantially lower than FAO values for young plantations.  相似文献   

6.
To understand the relations between water use and yield in response to crop load, two experiments were conducted in olive (cv. Morisca), during six consecutive years (2002-2007) in an experimental orchard located in Badajoz, Southwest Spain. Experiment 1, assessed the responses during the early years of the orchard (2002-2004) using four irrigation treatments that applied fractions of the estimated crop evapotranspiration (ETc) (125%, 100%, 75% and 0%) and three crop load levels (100%, 50% and 0% of fruit removal, termed Off, Medium and On treatments). Experiment 2 assessed the response of more mature trees (2005-2007) to three irrigation treatments (115%, 100%, and 60% of ETc) and the natural crop load which were Off, On, and Medium in 2005, 2006 and 2007, respectively. Yield was reduced by water deficits and so did the estimated tree transpiration which was linearly related to yield (y = 1.2302x − 21.15, R2 = 0.8864), showing the high sensitivity of cultivar Morisca to water deficits. The relations between fruit number and fruit weight showed that high crop loads had lower fruit weights and oil yield, a decrease that was more pronounced as water deficits increased. The yield response to water supply in the control and excess treatments, and the observations on the water relations of these two treatments suggest that the calculations made using the FAO method (Doorenbos and Pruit, 1974) with the crop coefficient proposed by Pastor et al. (1998) and the reduction coefficient (Fereres et al., 1982) to apply 100% of ETc in the control treatment, underestimated the ETc of the orchard. The results indicate that, although the absence of fruits lead to reduced water use as compared to situations of medium and high crop loads, canopy size was much more determinant of orchard water requirements than crop load.  相似文献   

7.
A simple irrigation scheduling approach for pecans   总被引:1,自引:0,他引:1  
Pecans are a major crop in New Mexico's Lower Rio Grande Valley (LRGV). It is estimated that New Mexico is responsible for about 21% of the world's pecan production (Lillywhite et al., 2007). Currently, approximately 12,000 ha of pecan orchards at various stages of growth consume 45% of the area's irrigation water. Pecan evapotranspiration (ET) varies with age, canopy cover, soil type, crop density and method of water management. Intense competition for the LRGV's limited water supply has created a serious need for better water management through improved irrigation scheduling. Annual pecan ET ranges from as low as 500 mm to as high as 1400 mm. Diversity of the pecan crop coefficient (Kc) and ET makes the task of irrigation scheduling for this crop very complicated. Using remote sensing technology and field ET measurements, a simple relationship was developed to relate crop coefficient and ET to canopy cover. This relationship is then used in combination with climate data to calculate daily and weekly water requirements for each orchard. The difference between annual ET values estimated from canopy cover and values measured with an eddy covariance flux tower ranged from 2 to 5%. The average ratio of estimated monthly ET values over measured ET values was 1.03 with the standard error of the estimate ranging from 10 to 20 mm/month. This methodology provides a simple tool that farmers can use to schedule irrigation of pecan orchards. Even though the methodology was developed for irrigation scheduling in the LRGV, it can be used in other locations by transferring the reference crop coefficients using Kc-GDD relationships.  相似文献   

8.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

9.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

10.
The use of digital infrared thermography and thermometry to investigate early crop water stress offers a producer improved management tools to avoid yield declines or to deal with variability in crop water status. This study used canopy temperature data to investigate whether an empirical crop water stress index could be used to monitor spatial and temporal crop water stress. Different irrigation treatment amounts (100%, 67%, 33%, and 0% of full replenishment of soil water to field capacity to a depth of 1.5 m) were applied by a center pivot system to soybean (Glycine max L.) in 2004 and 2005, and to cotton (Gossypium hirsutum L.) in 2007 and 2008. Canopy temperature data from infrared thermography were used to benchmark the relationship between an empirical crop water stress index (CWSIe) and leaf water potential (ΨL) across a block of eight treatment plots (of two replications). There was a significant negative linear correlation between midday ΨL measurements and the CWSIe after soil water differences due to irrigation treatments were well established and during the absence of heavy rainfall. Average seasonal CWSIe values calculated for each plot from temperature measurements made by infrared thermometer thermocouples mounted on a center pivot lateral were inversely related to crop water use with r2 values >0.89 and 0.55 for soybean and cotton, respectively. There was also a significant inverse relationship between the CWSIe and soybean yields in 2004 (r2 = 0.88) and 2005 (r2 = 0.83), and cotton in 2007 (r2 = 0.78). The correlations were not significant in 2008 for cotton. Contour plots of the CWSIe may be used as maps to indicate the spatial variability of within-field crop water stress. These maps may be useful for irrigation scheduling or identifying areas within a field where water stress may impact crop water use and yield.  相似文献   

11.
The use of the “one-step” approach of Penman-Monteith (P-M) to assess crop water use has its limit in the lack of user friendly methodologies for a daily assessment of crop canopy resistance, rc. The model proposed by Monteith [Monteith, J.L., 1965. Evaporation and environment. In: Fogg, G.E. (Ed.), The State and Movement of Water in Living Organism. Soc. Exp. Biol. Symp. 19, 205-234] to estimate rc (rc = 100/LAI), although it is simple, requires the knowledge of LAI value during growing cycle. This work aims to propose an easy-to-use methodology for irrigation scheduling, to assess the values LAI gets during the growing cycle and thus for canopy resistance assessment. In muskmelon crop, grown with and without plastic film mulching, canopy resistance was measured by P-M formula inversion, clarifying the unknown resistivity term, being crop evapotranspiration known by lysimeter-based measurements. Measured canopy resistance was compared with the one estimated by Monteith model (1965), both in its original version and in the form we simplified in terms of LAI value during crop cycle. Thus, we compared the evapotranspiration assessed by the “one-step” use of P-M equation, with those estimated by the classical “two-step” approach, using crop coefficients, and with that directly measured by lysimeters. In particular in the mulched crop the “one-step” approach of P-M overestimates water use only by 4%, while the “two steps” approach underestimates water use by 17%.Despite both the methodologies proposed for LAI calculation and the Monteith model to assess canopy resistance extremely simplify more complex processes, they were able to give a good accuracy to assess muskmelon water use by the P-M “one-step” equation. Comparing the “one-step” and the more used “two-step” approaches it came out that, despite the latter is better correlated to the data measured by a lysimeter, it does not achieve a more accurate assessment compared to the “one-step” approach; in particular, in the mulched crop, the “two-step” approach significantly underestimates water use, while its estimation is reliable with the “one-step” approach.  相似文献   

12.
Summary A coupled soil-vegetation energy balance model which treats the canopy foliage as one layer and the soil surface as another layer was validated againt a set of field data and compared with a single-layer model of a vegetation canopy. The two-layer model was used to predict the effect of increases in soil surface temperature (T s ) due to the drying of the soil surface, on the vegetation temperature (T v ). In the absence of any change in stomatal resistance the impact of soil surface drying on the Crop Water Stress Index (CSWI) calculated from T v was predicted. Field data came from a wheat crop growing on a frequently irrigated plot (W) and a plot left un watered (D) until the soil water depletion reached 100 mm. Vegetation and soil surface temperatures were measured by infrared thermometers from tillering to physiological maturity, with meteorological variables recorded simultaneously. Stomatal resistances were measured with a diffusion porometer intensively over five days when the leaf area index was between 5 and 8. The T v predicted by the single-layer and the two-layer models accounted for 87% and 88% of the variance of measured values respectively, and both regression lines were close to the 11 relationship. Study of the effect of T s on the CWSI with the two-layer model indicated that the CWSI was sensitive to changes in T s . The overestimation of crop water stress calculated from the CWSI was predicted to be greater at low leaf area indices and high levels of stomatal resistance. The implications for this bias when using the CWSI for irrigation scheduling are discussed.List of Symbols C Sensible heat flux from the soil-vegetation system (W m–2) - c l shade Mean stomatal conductance of the shaded leaf area (m s–1) - c l sun Mean stomatal conductance of the sunlit leaf area (m s–1) - c max Maximum stomatal conductance (m s–1) - c 0 Minimum stomatal conductance (m s–1) - C p Specific heat at constant pressure (J kg–1 °C–1) - C s Sensible heat flux from the soil (W m–2) - C v Sensible heat flux from the vegetation (W m–2) - c v Bulk stomatal conductance of the vegetation (m s–1) - CWSI Crop Water Stress Index (dimensionless) - e a Vapor pressure at the reference height (kPa) - e b Vapor pressure at the virtual source/sink height of heat exchange (kPa) - e 0 * Saturated vapor pressure at T 0 (kPa) - e s Vapor pressure at the soil surface (kPa) - e v * Saturated vapor pressure at T v (kPa) - G Soil heat flux (Wm–2) - GLAI Green leaf area index (dimensionless) - GLAIshade Green shaded leaf area index (dimensionless) - GLAIsun Green sunlit leaf area index (dimensionless) - k Extinction coefficient for photosynthetically active radiation (dimensionless) - k 1 Damping exponent for Eq. A 5 (m2 W–1) - LAI Leaf area index (dimensionless) - LE Latent heat flux from the soil-vegetation system (W m–2) - LE s Latent heat flux from the soil (W m–2) - LE v Latent heat flux from the vegetation (W m–2) - p a Density of air (kg m–3) - PARa Photosynthetically active radiation above the canopy (W m–2) - PARu Photosynthetically active radiation under the canopy (W m–2) - r a Aerodynamic resistance (s m–1) - r b Heat exchange resistance between the vegetation and the adjacent air boundary layer (s m–1) - r c Bulk stomatal resistance of the vegetation (s m–1) - R n Net radiation above the canopy (W m–2) - R s Net radiation flux at the soil surface (W m–2) - r st Mean stomatal resistance of leaves in the canopy (s m–1) - R v Net radiation absorbed by the vegetation (W m–2) - r w Heat exchange resistance between the soil surface and the boundary layer (s m–1) - S Photosynthetically active radiation on the shaded leaves (W m–2) - S d Diffuse photosynthetically active radiation (W m –2) - S 0 Photosynthetically active radiation on a surface perpendicular to the beams (W m–2) - T a Air temperature at the reference height (°C) - T b Temperature at the virtual source/sink height of heat exchange (°C) - T 0 Aerodynamic temperature (°C) - T s Soil surface temperature (°C) - T v Vegetation temperature (°C) - w 0 Single scattering albedo (dimensionless) - Psychrometric constant (kPa °C) - 0 Cosine of solar zenith angle (dimensionless)  相似文献   

13.
A combined methodology of basal crop coefficient (Kcb) derived from vegetation indices (VI) obtained from satellite images and a daily soil water balance in the root zone of the crop was proposed to accurately estimate the daily grape crop coefficient and actual evapotranspiration. The modeled values were compared with field measurements of crop evapotranspiration (ET) using an energy balance eddy-covariance flux tower and adjusted for closure using the measured Bowen ratio. A linear relation between Kcb and VI for vineyard was obtained, Kcb = 1.44 × NDVI-0.10 and Kcb = 1.79 × SAVI-0.08. The correlation of the measured crop coefficient (Kc) and modeled (Kcrf) exhibits a linear tendency, Kc = 0.96Kcrf, r2 = 0.67. Other derived parameters such as weekly Kc and daily and weekly ET show good consistency with measurements and higher coefficients of determination. The study of the soil water balance suggests the importance of soil water storage in grapes within the La Mancha region. These results validate the use of remote sensing as a tool for the estimation of evapotranspiration of irrigated wine grapes planted on trellis systems.  相似文献   

14.
Pomegranate (Punica granatum L.) is a drought-hardy crop, suited to arid and semi-arid regions, where the use of marginal water for agriculture is on the rise. The use of saline water in irrigation affects various biochemical processes. For a number of crops, yields have been shown to decrease linearly with evapotranspiration (ET) when grown in salt-stressed environments. In the case of pomegranate, little research has been conducted regarding the effect of salt stress. Our study focused on the responses of ET, crop coefficient (Kc) and growth in pomegranate irrigated with saline water. Experiments were conducted using lysimeters with two varieties of pomegranate, P. granatum L. vars. Wonderful and SP-2. The plants were grown with irrigation water having an electrical conductivity (ECiw) of 0.8, 1.4, 3.3, 4.8 and 8 dS m−1. Plants were irrigated with 120% of average lysimeter-measured ET. Seasonal variation in ET, crop coefficient (Kc) and growth were recorded. Variation in daily ET was observed 1 month after initiation of the treatments. While significant seasonal ET variation was observed for the EC-0.8 treatment, it remained more stable for the EC-8 treatment. Salinity treatment had a significant effect on both daily ET (F = 131, p < 0.01) and total ET (F = 112.68, p = 0.001). Furthermore, the electrical conductivity of the drainage water (ECdw) in the EC-8 treatment was five times higher than that of the EC-0.8 treatment in the peak season. Fitting the relative ET (ETr) to the Maas and Hoffman salinity yield response function showed a 10% decrease in ET per unit increase in electrical conductivity of the saturated paste extract (ECe) with a threshold of 1 dS m−1. If these parameters hold true in the case of mature pomegranate trees, the pomegranate should be listed as a moderately sensitive crop rather than a moderately tolerant one. Fitting 30-day interval ETr data to the Maas and Hoffman salinity yield response function showed a reduction in the slope as the season progressed. Thus using a constant slope in various models is questionable when studying crop-salinity interactions. In addition, both of the varieties showed similar responses under salt stress. Moreover, the calculated value of Kc is applicable for irrigation scheduling in young pomegranate orchards using irrigation water with various salinities.  相似文献   

15.
A discussion on and alternative to the Penman-Monteith equation   总被引:1,自引:0,他引:1  
The Penman-Monteith (PMe) equation that estimates evaporation from leaf/canopy surfaces is based on a few approximations. Several authors discussed ensuing errors and suggested improvements. This paper reminds those discussions which ended in the early nineties. It compares linearized PMe− with non-linear iterative solutions and illustrates resulting deviations. It differentiates between deviations for daily and hourly evaporation rate estimates. The latter are found to be higher. It also demonstrates deviations obtained at two different altitudes above sea level. Considering present tendencies to refine evaporation estimates for practical purposes and making use of easily available methods for solving non-linear equations this paper offers a new method to estimate evaporation.In a first step, a simple algebraic term, the surface temperature control sum, is introduced to find approximate differences between air and evaporating surface (leaf, canopy) temperatures. It suggests to concentrate research on the rs/ra ratio. A new formula is derived for estimating leaf/canopy surface temperatures for non-water stressed plants.In a second step, the estimates of temperature differences are used to calculate evaporation estimates. This two-step approximation leads to appreciably smaller errors as compared to the PMe-solution over the full range of input parameters of agro-meteorological relevance. It is, however, less accurate than some of methods proposed in literature. The method is meant for practical application in agricultural water management.  相似文献   

16.
Crop evapotranspiration (ET) is an important component of simulation models with many practical applications related to the efficient management of crop water supply. The algorithms used by models to calculate ET are of various complexity and robustness, and often have to be modified for particular environments. We chose three crop models with different ET calculation strategies: CROPWAT with simple data inputs and no calibrations, MODWht for intensive inputs and limited calibrations, and CERES-Wheat with intensive inputs and more calibrations for parameters. The three crop models were used to calculate ET of winter wheat (Triticum aestivum L.) grown at two experimental sites of China and US during multiple growing seasons in which ET was measured using lysimeter or soil water balance techniques. None of the models calculated daily ET well at either Bushland or Zhengzhou as indicated by high mean absolute differences (MAD > 1.1 mm) and root mean squared errors (RMSE > 2.0 mm). The three models tended to overestimate daily ET when measured ET was small, and to underestimate daily ET when measured ET was large. The fitted values of daily crop coefficients (Kc), calculated from daily ET and reference ET (ETo), were very similar to those of Allen et al. (1998) [Allen, R.G., Pereira, S.L., Raes, D., Smith, M., 1998. Crop evapotranspiration guidelines for computing crop water requirements. Irrigation and drainage paper 56, Rome] although some Kc were overestimated (≥1.0). Leaf area index (LAI) was poorly calculated by MODWht and CERES-Wheat, especially when using the Priestley-Taylor method to estimate potential ET (PET). Poor overall ET calculation of three models was associated with poorly estimated values of PET or ETo, Kc and LAI as well as their interactions. Therefore, this suggested that considerable revisions and calibrations of ET algorithms of the three models are needed for the improvement of ET calculation.  相似文献   

17.
In this work, maize (Zea mays L.) and alfalfa (Medicago sativa L.) were irrigated in two adjoining plots with the same sprinkler solid-set system. Irrigation was evaluated between four sprinklers in the central position within each plot, above the canopy with pluviometers and in the soil with a FDR probe. Maize and alfalfa were simultaneously irrigated under the same operational and technical conditions during two seasons: in 2005, the solid-set irrigation system layout was rectangular, 15 m between sprinklers along the irrigation line and 15 m among lines (R15 × 15), and the seasonal irrigation applied according to the crop evapotranspiration (ETc); in 2006, the solid-set layout was R18 × 15 and the seasonal irrigation was around 30% lower than the ETc. The irrigation depth above the canopies (IDC) and the soil water recharge after irrigation (RW) were monitored using a 3 m × 3 m grid (25 points in 2005 and in 30 points in 2006). For maize, RW was assessed both in the lines of plants (CL) and between the lines (BCL).The average values of IDC were similar between crops during both seasons but the uniformity (CUC) of the IDC noticeably depended on the crop: the differences were greater between crops than between sprinklers spacings (R15 × 15 and R18 × 15). The CUC of IDC, the RW and the CUC of RW were greater for alfalfa than for maize. The CUC of IDC was greater than the CUC of RW for both crops. The RW was significantly related with the IDC throughout the irrigation season for alfalfa. The correlation was weaker for maize, with important differences between positions and between growth stages. At the beginning of the season, the RW significantly correlated with the IDC, both in the CL and BCL positions. However, the correlation weakened when the maize grew, especially in the CL, because the maize plants redistributed the water.The results show that the height and canopy architecture of the crop must be considered in the analysis of the sprinkler water distribution as factors influencing the irrigation performance.  相似文献   

18.
Trunk sap flow of tree is an important index in the irrigation decision of orchard. On the basis of the measured sap flow (SF) of pear tree (Pyrus pyrifolia) in the field, the multiple-linear regression for simulating the SF was obtained after analyzing the relationships between the SF and its affecting factors in this study and an artificial neural network (ANN) technique was applied to construct a nonlinear mapping to simulate the SF, then the simulated SF by two models was, respectively, compared to the measured value. Results showed that trunk SF had significant relationship with the vapour pressure deficit (VPD) in the single-variable analysis method but with soil volumetric water content (θ) using the ANN models with default of different variables. The correlation coefficient (R2), mean relative error (MRE) and root mean square error (RMSE) between the measured and simulated sap flows by the ANN model developed by taking VPD, solar radiation (Sr), air temperature (T), wind speed (Ws), θ, leaf area index (LAI) as the input variables were 0.953, 10.0% and 5.33 L d−1, respectively, and the simulation precision of ANN model was superior to that of multiple-linear regression due to its better performance for the nonlinear relationship between trunk SF and its affecting factors, thus ANN model can simulate trunk sap flow and then may help the efficient water management of orchard.  相似文献   

19.
Direct measurement of soil saturated hydraulic conductivity (Ks) is time-consuming and therefore costly. The ROSETTA pedotransfer function model is able to estimate Ks from soil textural data, bulk density and one or two water retention points. This study evaluated the feasibility of running the DRAINMOD field-scale hydrological model with Ks input produced using ROSETTA. A hierarchical approach was adopted to estimate Ks using ROSETTA, with four limited-more extended sets of soil information used as inputs: USDA textural class (H1); texture (H2); texture and bulk density (H3); texture, bulk density, water retention at −33 kPa (θ33 kPa) and −1500 kPa (θ1500 kPa) (H4). ROSETTA-estimated Ks values from these four groups (H1-H4) were used in DRAINMOD to simulate drain outflows during a 4-year period from a conventional drainage plot (CD) and two controlled drainage plots (CWT1 and CWT2) located in south-east Sweden. The DRAINMOD results using ROSETTA-estimated Ks values were compared with observed values and with model results using laboratory-measured Ks values (H0). Deviations in simulated drainage outflow (D), infiltration (F) and evapotranspiration (ET) resulting from the use of ROSETTA-estimated rather than laboratory-measured Ks values were evaluated. During the study period, statistical comparisons showed good agreement on a monthly basis between observed and DRAINMOD-simulated drainage rates using five soil datasets (H0, H1, H2, H3 and H4). The monthly mean absolute error (MAE) ranged from 0.57 to 0.82 cm for CD, 0.38 to 0.41 cm for CWT1, and 0.15 to 0.22 cm for CWT2. On a monthly basis, the modified coefficient efficiency (E′) values were in the range of 0.62 to 0.74 for CD, 0.72 to 0.74 for CWT1, and 0.79 to 0.86 for CWT2. The modified index of agreement (d′) for monthly predictions ranged from 0.80 to 0.86 cm for CD, 0.87 to 0.88 cm for CWT1, and 0.89 to 0.93 cm for CWT2. The absolute values of the percent-normalised error (NE) on an overall basis when using ROSETTA-estimated rather than laboratory-measured Ks values were less than 3% in E, less than 1% in F, and less than 15% in D. The results suggest that ROSETTA-estimated Ks values can be used in DRAINMOD to simulate drainage outflows as accurately as laboratory-measured Ks values (H0) in coarse-textured soils.  相似文献   

20.
Crop scientists are often interested in canopy rather than leaf water estimates. Comparing canopy fluxes for multiple treatments using micrometeorological approaches presents limitations because of the large fetch required. The goal of this study was to compare leaf-scale to field-scale data by summing soil water evaporation (E) and leaf transpiration (T) versus ET using tower eddy covariance (EC) and scaling leaf transpiration to the canopy level using a two-step scaling approach in soybean [Glycine max (L.) Merr.]. Soybean transpiration represented 89-96% of E + T when combining the soil water evaporation with leaf transpiration on the five measurement days during reproductive growth. Comparing E + T versus ET from the EC system, the E + T method overestimated ET from 0.68 to 1.58 mm. In terms of percent difference, the best agreement between the two methods was 15% on DOY 235 and the worst agreement occurred on DOY 234 (41%). A two-step scaling method predicted average ET within 0.01 mm of the EC ET between 10:00 and 14:15 on an hourly time-step on DOY 227 under uniform sky conditions and average ET within 0.03 mm of the EC ET on DOY 235 under intermittent sky conditions between 10:00 and 15:15. Pooling the scaled-leaf data and comparing them with the measured EC ET data exhibited a strong linear relationship (r = 0.835) after accounting for bias (6%). Findings from this study indicate satisfactory results comparing absolute differences are likely not obtainable by summing leaf transpiration with soil water evaporation to calculate canopy water fluxes. However, scaling leaf transpiration provided a robust measure of canopy transpiration during reproductive growth in soybean under these conditions and merits additional study under different climatic and crop conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号