首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field experiments were conducted at the Luancheng Agro-Ecosystem Experimental Station of the Chinese Academy of Sciences during the winter wheat growing seasons in 2006-2007 and 2007-2008. Experiments involving winter wheat with 1, 2, and 3 irrigation applications at jointing, heading, or milking were conducted, and the total irrigation water supplied was maintained at 120 mm. The results indicated that irrigation during the later part of the winter wheat growing season and increase in irrigation frequency decreased the available soil water; this result was mainly due to the changes in the vertical distribution of root length density. In ≤30-cm-deep soil profiles, 3 times irrigation at jointing, heading, and milking increased the root length density, while in >30-cm-deep soil profiles, 1 time irrigation at jointing resulted in the highest root length density. With regard to evapotranspiration (ET), there was no significant (LSD, P < 0.05) difference between the regimes wherein irrigation was applied only once at jointing; 2 times at jointing and heading; and 3 times at jointing, heading, and milking. Compared with 1 and 3 times irrigation during the winter wheat growing season, 2 times irrigation increased grain yield and 2 times irrigation at jointing and heading produced the highest water-use efficiency (WUE). Combining the results obtained regarding grain yield and WUE, it can be concluded that irrigation at the jointing and heading stages results in high grain yield and WUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.  相似文献   

2.
调亏灌溉对冬小麦根冠生长影响的试验研究   总被引:2,自引:1,他引:2  
以冬小麦为试验材料,采用防雨棚下桶栽土培方法,就调亏灌溉(RDI)对作物根、冠生长的影响进行了试验研究。试验采用二因素随机区组设计,冬小麦设置5个水分调亏阶段,每个调亏阶段设置3个水分调亏程度,另设全生育期充分供水处理为对照(CK)。分别在水分调亏期间和复水后测定各处理根系参数和地上干物质质量。结果表明,RDI对植株根冠生长发育的影响因不同水分调亏阶段和不同水分调亏度而有所不同。在水分调亏期间冬小麦根系生长受到强烈抑制,但复水后根系具有"补偿生长效应"或"超补偿生长效应"。冬前适度水分调亏(调亏度55%FC~65%FC)对根系生长具有正效应;返青—拔节阶段不同程度水分调亏复水后均有"补偿生长效应"或"超补偿生长效应",而且这种"补偿生长效应"随水分调亏度加重呈增强趋势。冬小麦水分调亏均增大根冠比(R/S),且随水分调亏度加重,R/S明显增大。因此,RDI可以作为冬小麦根冠生长调控的有效方法。  相似文献   

3.
为获取冬小麦根系层水量转化情况,该文采用系统动力学的建模思想和Vensim软件构建了冬小麦一维逐日土壤水量平衡模型。模型将2m土层概化为十个串联的水箱,计算了灌溉降雨后的土壤水分下渗、土壤蒸发、作物蒸腾、毛管上升补给和水分重分配等物理过程。利用河北省石津灌区军齐干渠北二支一斗渠2007-2009年两季冬小麦的田间试验资料对模型进行了率定和验证,结果显示率定期和验证期的平均残差比例和分散均方根比例均在15%以内。三种极端条件测试和六种参数的敏感性测试以及与Hydrus-1模型的比较表明模型假定合理,没有发生结构性错误。对灌区两季冬小麦生育期的土壤水分转化进行模拟,结果表明降雨和灌溉是主要供水水源,毛管水上升量很小,底部渗漏较大,而土壤储水量变化很小。  相似文献   

4.
施用中瑞保水利对冬小麦生长发育及产量的影响   总被引:1,自引:1,他引:1  
利用盆栽、筒栽、坑测和大田试验相结合的方法,研究了中瑞保水剂对小麦出苗率、根完冠比及生长发育和产量的影响。结果表明,当土壤含水率介于12.1%-16.8%之间时,用保水剂拌种可使冬小麦提早1-3d出苗,出苗率增加25.0%-31.7%,沟施保水剂可使出苗率增加3.3%-8.3%;施用中瑞保水剂,苗期的主要作用是促进根系发育、增大根冠比,拨节以后则转为促进上部分发育,使产量及其构成要素均有不同程度地增加,水分利用率明显提高。  相似文献   

5.
本文分析了气象因素与作物对地下水利用量相关性,不同地下水位对小麦生态、生理和产量的影响。并应用土壤水动力学原理分析小麦各生育期根系吸水规律。提出不同土壤类型地下水适宜埋深,为黄淮平原节水灌溉和排水标准提供依据。  相似文献   

6.
Wheat is the most important cereal crop in the semi-arid eastern Mediterranean region that includes northern Syria. Knowledge of wheat root depth and the vertical distribution during the winter growing season is needed for sound scheduling of irrigation and efficient use of water. This article reports evaluation of root development for three winter-grown bread (Triticum aestivum L.) and durum (Triticum turgidum L.) wheat under four soil water regimes (rainfed and full irrigation with two intermediate levels of 33 and 66% of full irrigation). Roots were sampled by soil coring to a depth of 0.75 m at four occasions during 2005-2006 growing season. Two distinct phases of root development were identified, a rapid downward penetration from emergence to end tillering phase, followed by a substantial root mass growth along the profile from tillering to mid-stem-elongation phase. Roots were detected as deep as 0.75 m during the initial rapid penetration, yet only 29% of the total seasonal root mass was developed. This downward penetration rate averaged 7 mm d−1 and produced 10.8 kg ha−1 d−1 of root dry-biomass. The bulging of root mass from tillering to mid-stem-elongation coincided with vigorous shoot growth, doubling root dry-biomass at a rate of 52 kg ha−1 d−1, compared to the seasonal root growth rate of 18.3 kg ha−1 d−1. A second-degree equation described the total root dry-biomass as a function of days after emergence (r2 = 0.85), whereas a simpler equation predicted it as a function of cumulative growing degree days (r2 = 0.85). The final grain yield was a strong function of irrigation regimes, varying from 3.0 to 6.5 t ha−1, but showed no correlation with root biomass which remained similar as soil water regimes changed. This observation must be viewed with care as it lacks statistical evidence. Results showed 90% of root mass at first irrigation (15 April) confined in the top 0.60-0.75 m soil in bread wheat. Presence of shallow restricting soil layers limited root depth of durum wheat to 0.45 m, yet total seasonal root mass and grain yield were comparable with non-restricted bread wheat. Most root growth occurred during the cool rainy season and prior to the late irrigation season. The root sampling is short of rigorous, but results complement the limited field data in literature collectively suggesting that irrigation following the rainy season may best be scheduled assuming a well developed root zone as deep as the effective soil depth within the top meter of soil.  相似文献   

7.
淮河流域是我国农作物主要种植区,为了深入认识淮河流域干旱现状及其特征、探究干旱发生规律,减少干旱对农作物造成的不利影响。以淮河流域为研究区域,选取土壤相对湿度作为干旱评价指标,以2010-2019年MODIS数据为数据源,计算出表观热惯量指数(ATI)和植被供水指数(VSWI),根据地表植被覆盖度的不同,筛选出合适的ATI和VSWI指数,然后分别与实测土壤相对湿度数据分别进行回归建模,得到拟合方程,最后,通过反演得到的土壤相对湿度数据来阐述淮河流域干旱的时空分布特征。结果表明:①干旱一年四季都会发生,干旱笼罩面积大小关系为:冬季>秋季>春季>夏季;②淮河流域冬小麦生长季较夏玉米生长季发生干旱的范围广;③从空间上来看,淮河流域东部、东北部、西南部的干旱范围较广,干旱的覆盖范围大小具体有:西南部和东北部>西北部和东南部,东北部>东南部,西南部>西北部。  相似文献   

8.
开展小麦籽粒蛋白质含量的监测预报研究对于指导农户调优栽培、企业分类收储、期货小麦价格、进口政策调整等具有重要意义.本研究以冬小麦主产区(河南省、山东省、河北省、安徽省和江苏省)为研究区域,构建了冬小麦籽粒蛋白质含量多层线性预测模型,并实现了2019年冬小麦蛋白质含量预报.为了解决预测模型在年际扩展和空间扩展存在偏差的问...  相似文献   

9.
Development of crop coefficient (Kc), the ratio of crop evapotranspiration (ETc) to reference evapotranspiration (ETo), can enhance ETc estimates in relation to specific crop phenological development. This research was conducted to determine growth-stage-specific Kc and crop water use for cotton (Gossypium hirsutum) and wheat (Triticum aestivum) at the Texas AgriLife Research field at Uvalde, TX, USA from 2005 to 2008. Weighing lysimeters were used to measure crop water use and local weather data were used to determine the reference evapotranspiration (ETo). Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA) and a seventh lysimeter was established to measure reference grass ETo. Crop water requirements, Kc determination, and comparison to existing FAO Kc values were determined over a 2-year period on cotton and a 3-year period on wheat. Seasonal total amounts of crop water use ranged from 689 to 830 mm for cotton and from 483 to 505 mm for wheat. The Kc values determined over the growing seasons varied from 0.2 to 1.5 for cotton and 0.1 to 1.7 for wheat. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific Kc helps in irrigation management and provides precise water applications for this region.  相似文献   

10.
The main purpose of this paper was to evaluate whether or not the dual crop coefficient (DCC) method proposed in FAO-56 was suitable for calculating the actual daily evapotranspiration of the main crops (winter wheat and summer maize) in the North China Plain (NCP). The results were evaluated with the data measured by the large-scale weighing lysimeter at the Yucheng Comprehensive Experimental Station (YCES) of the Chinese Academy of Sciences (CAS) from 1998 to 2005 using the Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE) and the root mean square error to observations’ standard deviation ratio (RSR). The evaluation results showed that the DCC method performed effective in simulating the quantity of seasonal evapotranspiration for winter wheat but was inaccurate in calculating the peak values. The RMSE value of the winter wheat during the total growing season was less than 0.9 mm/d, the NSE and RSR values during the total growing stage were “Very Good”, but the results for summer maize were “Unsatisfactory”. The recommended basal crop coefficient values Kcbtab during the initial, mid-season and end stages for winter wheat and summer maize were modified and the variation scope of basal crop coefficient Kcb was analyzed. The Kc (compositive crop coefficient, Kc = ETc/ET0, ETc here is the observed values by lysimeter, ET0 is the reference evapotranspiration) values were estimated using observed weighing lysimeter data during the corresponding stages for winter wheat and summer maize were 0.80, 1.15, 1.25, 0.95; 0.90, 0.95, 1.25, 1.00, respectively. These can be a reference for irrigation planning.  相似文献   

11.
In the semi-humid to arid loess plateau areas of North China, water is the limiting factor for rain-fed crop yields. Conservation tillage has been proposed to improve soil and water conservation in these areas. From 1999 to 2005, we conducted a field experiment on winter wheat (Triticum aestivum L.) to investigate the effects of conservation tillage on soil water conservation, crop yield, and water-use efficiency. The field experiment was conducted using reduced tillage (RT), no tillage with mulching (NT), subsoil tillage with mulching (ST), and conventional tillage (CT). NT and ST improved water conversation, with the average soil water storage in 0–200 cm soil depth over the six years increased 25.24 mm at the end of summer fallow periods, whereas RT soil water storage decreased 12 mm, compared to CT. At wheat planting times, the available soil water on NT and ST plots was significantly higher than those using CT and RT. The winter wheat yields were also significantly affected by the tillage methods. The average winter wheat yields over 6 years on NT or ST plots were significantly higher than that in CT or RT plots. CT and RT yields did not vary significantly between them. In each study year, NT and ST water-use efficiency (WUE) was higher than that of CT and RT. In the dry growing seasons of 1999–2000, 2004–2005 and the low-rainfall fallow season of 2002, the WUE of NT and ST was significantly higher than that of CT and RT, but did not vary significantly in the other years. For all years, CT and RT showed no WUE advantage. In relation to CT, the economic benefit of RT, NT, and ST increased 62, 1754, and 1467 yuan ha−1, respectively, and the output/input ratio of conservation tillage was higher than that of CT. The overall results showed that NT and ST are the optimum tillage systems for increasing water storage and wheat yields, enhancing WUE and saving energy on the Loess Plateau.  相似文献   

12.
The factor limiting the increase in winter wheat yield was not the deficiency of light radiation but the low radiation use efficiency (RUE). In 2004-2005 and 2005-2006, an experiment was conducted at the Agronomy Station of Shandong Agricultural University to study the effects of irrigation and different planting patterns on the photosynthetic active radiation (PAR) capture ratio, PAR utilization, and winter wheat yield. In this experiment, winter wheat was planted in four patterns as follows: uniform row planting (U; row spacing, 30 cm), “20 + 40” wide-narrow row planting (W), “20 + 40” furrow planting (F), and “20 + 40” bed planting (B), which are very popular in North China. The results showed that under different irrigation regimes, there was no significant difference (less than 15.93%) between any of the planting patterns with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between different planting patterns with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface (53.35-225.16%). This result was mainly due to the changes in the vertical distributions of leaf area index (LAI). As a result, the effects of the planting patterns on RUE and the winter wheat yield were due the vertical distribution of PAR in the winter wheat canopies. During the late winter wheat growing season, irrespective of the applied irrigation, the RUE in case of F was higher than that in case of U, W, and B by 0.05-0.09, 0.04-0.08, and 0.02-0.12 g/mol, respectively, and the yield was higher by 238.39-693.46, 160.02-685.96, and 308.98-699.06 kg/ha, respectively. Only under the fully irrigated conditions, the RUE and winter wheat yield significantly (LSD; P < 0.05) increased in case of B. This experiment showed that in North China, where the water shortage is the highest, application of planting pattern B should be restricted. Instead, F should be used in combination with deficit irrigation to increase the RUE and grain yield of winter wheat.  相似文献   

13.
引入逻辑斯蒂函数描述水分敏感指数随时间的变化过程,对Jensen模型(模型一)进行了改进,使得改进后的作物水模型(模型二)的参数固定为4个,避免了模型一参数随时段数增加而增加的缺陷。采用山西水利职业技术学院试验基地2007年和2008年冬小麦田间试验资料,将冬小麦全生育期等间隔地划分为23、21、19、17、……、3共11个时段,利用非线性规划的方法求得了相应的模型参数,进行了比较分析。结果表明,采用模型一时,相对腾发量划分的时段数以5左右为宜,不宜超过7;采用模型二时,则不受时段数的限制;模型二的修正复相关系数Ra随时段数的增加略有增大的趋势,均在0.84以上,F值均在16以上,大于F0.001=12.56,达到极显著水平,能够用于模拟供水对产量的影响;模型二的标准误随时段数的增加上下波动,变化于0.100~0.108之间,小于模型一的标准误,模拟精度高于模型一;采用模型二模拟产量时宜尽量使用较大时段数的参数,且腾发量划分的时段数与参数的时段数应尽可能一致。  相似文献   

14.
华北典型区冬小麦区域耗水模拟与灌溉制度优化   总被引:3,自引:0,他引:3  
以经校验Aquacrop模型模拟了不同土壤条件下冬小麦水分与产量响应关系,结合北京大兴区土壤分布及其冬小麦实际种植情况,对模型模拟结果进行区域尺度拓展,以此为基础分析了研究区不同灌溉制度下冬小麦耗水量、产量及水分生产率的变化规律,并推荐了与华北地区水资源实际情况相适宜的冬小麦亏缺灌溉制度。结果表明:应用Aquacrop模型能较好模拟冬小麦生育期内土壤墒情和冠层覆盖度的动态变化过程及其生物量与产量情况,可利用经校验后的模型进行冬小麦水分与产量响应关系研究。灌溉定额在300 mm范围内,随着灌溉量增加,耗水量增大;在灌水次数相同条件下,灌溉日期不同,因蒸腾量变化导致耗水量差异显著。在相同处理下总体上降水多年份产量较高,而不同处理之间随着灌溉量增加产量增大;在灌水次数相同情况下,灌溉关键生育时段选择对冬小麦产量形成及水分生产率提高至关重要。以冬小麦增产提效为原则,在灌1水情况下重点保障拔节-抽穗阶段的需水;灌2水情况下重点保障返青-拔节、抽穗-乳熟阶段需水;灌3水情况下重点保障返青-拔节、拔节-抽穗、抽穗-乳熟阶段需水。针对华北水资源严重短缺实际,建议北京大兴区冬小麦采用灌2水的亏缺灌溉制度,较灌4水情况下的灌溉量与耗水量分别减少140、65 mm,能确保75%产量。可见,在与华北类似的资源性缺水区域,选择适宜亏缺灌溉制度,能大幅降低区域灌溉量与耗水量,在稳定区域冬小麦产量及涵养地下水源方面具有重要的现实意义。  相似文献   

15.
通过小白菜盆栽试验,将小白菜的生长期分3个阶段,每个阶段10d,在不同生长阶段分别用含有Cd离子的水进行灌溉,并以清水作对照,研究分析了不同生长阶段重金属镉对小白菜的叶绿素含量的影响,对根系和茎叶干物质积累量的影响,以及对根系和茎叶中重金属Cd累积与分布的影响,表明小白菜生长的中后期不宜用含有Cd离子的污废水进行灌溉。  相似文献   

16.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

17.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

18.
Quantification of the interactive effects of nitrogen (N) and water on nitrate (NO3) loss provides an important insight for more effective N and water management. The goal of this study was to evaluate the effect of different irrigation and nitrogen fertilizer levels on nitrate-nitrogen (NO3-N) leaching in a silage maize field. The experiment included four irrigation levels (0.7, 0.85, 1.0, and 1.13 of soil moisture depletion, SMD) and three N fertilization levels (0, 142, and 189 kg N ha−1), with three replications. Ceramic suction cups were used to extract soil solution at 30 and 60 cm soil depths for all 36 experimental plots. Soil NO3-N content of 0-30 and 30-60-cm layers were evaluated at planting and harvest maturity. Total N uptake (NU) by the crop was also determined. Maximum NO3-N leaching out of the 60-cm soil layer was 8.43 kg N ha−1, for the 142 kg N ha−1 and over irrigation (1.13 SMD) treatment. The minimum and maximum seasonal average NO3 concentration at the 60 cm depth was 46 and 138 mg l−1, respectively. Based on our findings, it is possible to control NO3 leaching out of the root zone during the growing season with a proper combination of irrigation and fertilizer management.  相似文献   

19.
区域表层土壤EC_s和pH时空变异性分布及其相关性   总被引:2,自引:1,他引:2  
应用地质统计学原理与方法,在山东簸箕李灌区开展区域表层土壤盐性和碱性分布状况的研究,描述表层土壤EC_s和pH的空间与时间变化分布趋势和特征,分析二者间的相关性。研究结果表明,表层土壤EC_s和pH在周年内表现出相近的区域时间变异分布趋势和相反的区域空间分布状况。EC_s和pH在灌区上游的西南方向和下游的分布状况相对稳定,而在中游的变化却呈现出各自的时间季节性差异,表层土壤盐性的区域空间分布状况似乎影响到其碱性的空间分布趋势。EC_s和pH间存在的负相关性不仅表观上与表层土壤盐化程度有关,还受到其它诸多因子的影响。受当地季风气候影响,EC_s在夏玉米收获期内明显低于冬小麦收获期,而pH在湿润的初秋时节则高于干旱的初夏季节,表层土壤质地类型差异对土壤盐性和碱性的影响较为明显。研究成果为灌区制定合理的区域农田水土管理策略和作物种植模式提供了科学的依据。  相似文献   

20.
Irrigation and fertilization management practices play important roles in crop production. In this paper, the Root Zone Water Quality Model (RZWQM) was used to evaluate the irrigation and fertilization management practices for a winter wheat–summer corn double cropping system in Beijing, China under the irrigation with treated sewage water (TSW). A carefully designed experiment was carried out at an experimental station in Beijing area from 2001 to 2003 with four irrigation treatments. The hydrologic, nitrogen and crop growth components of RZWQM were calibrated by using the dataset of one treatment. The datasets of other three treatments were used to validate the model performance. Most predicted soil water contents were within ±1 standard deviation (S.D.) of the measured data. The relative errors (RE) of grain yield predictions were within the range of −26.8% to 18.5%, whereas the REs of biomass predictions were between −38% and 14%. The grain nitrogen (N) uptake and biomass N uptake were predicted with the RE values ranging from −13.9% to 14.7%, and from −11.1% to 29.8%, respectively. These results showed that the model was able to simulate the double cropping system variables under different irrigation and fertilization conditions with reasonable accuracy. Application of RZWQM in the growing season of 2001–2002 indicated that the best irrigation management practice was no irrigation for summer corn, three 83 mm irrigations each for pre-sowing, jointing and heading stages of winter wheat, respectively. And the best nitrogen application management practice was 120 kg N ha−1 for summer corn and 110 kg N ha−1 for winter wheat, respectively, under the irrigation with TSW. We also obtained the alternative irrigation management practices for the hydrologic years of 75%, 50% and 25%, respectively, in Beijing area under the conditions of irrigation with TSW and the optimal nitrogen application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号