首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anticancer effects of (-)-anonaine were investigated in this current study. (-)-Anonaine at concentration ranges of 50-200 μM exhibited significant inhibition to cell growth and migration activities on human lung cancer H1299 cells at 24 h, albeit cell cycle analyses showed that (-)-anonaine at the above concentration ranges did not cause any significant changes in cell-cycle distributions. Significant nuclear damages of H1299 cells were observed with 10-200 μM (-)-anonaine treatment in a comet assay, whereas higher concentrations (6 and 30 mM) of (-)-anonaine concentrations were required to cause DNA damages in an in vitro plasmid cleavage assay. In summary, our results demonstrated that (-)-anonaine exhibited dose-dependent antiproliferatory, antimigratory, and DNA-damaging effects on H1299 cells. We inferred that (-)-anonaine can cause cell-cycle arrest and DNA damage to hamper the physiological behavior of cancer cells at 72 h, and therefore, it can be useful as one of the potential herbal supplements for chemoprevention of human lung cancer.  相似文献   

2.
The aim of this work was to investigate the anticancer cytotoxic effects of natural compound subamolide E on the human skin cancer melanoma A375.S2 cells. Subamolide E was isolated from Cinnamomum subavenium and demonstrated cytotoxicities in the cell-growth assay at concentration ranges from 0 to 100 μM at 24 h. Propidium iodide staining and flow cytometry analyses were used to evaluate cell-cycle distribution and found that subamolide E caused DNA damage in the sub-G1 phase with a dose-dependent manner after 24 h of treatment. According to the western blot result, subamolide-E-treated cells with the increase of caspase-dependent apoptotic proteins induced related pathway mechanisms. Subamolide E also showed antimigratory activities of A375.S2 cells on the wound-healing assay. Finally, subamolide E demonstrated minor cytotoxicities to normal human skin cells (keratinocytes, melanocytes, and fibroblasts); therefore, it is a potential chemotherapeutic agent against skin melanoma.  相似文献   

3.
This study examined the growth inhibitory effects of structurally related polymethoxylated flavones in human cancer cells. Here, we report that 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) induces growth inhibition of human cancer cells and induction of apoptosis in HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 5-OH-HxMF-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that 5-OH-HxMF induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bax was found in 5-OH-HxMF-treated HL-60 cells. In addition, a caspase-independent pathway indicated by endonuclease G also contributed to apoptosis caused by 5-OH-HxMF. Antioxidants suppress 5-OH-HxMF-induced apoptosis. 5-OH-HxMF markedly enhanced growth arrest DNA damage-inducible gene 153 (GADD153) protein in a time-dependent manner. N-acetylcysteine (NAC) and catalase prevented up-regulation of GADD153 expression caused by 5-OH-HxMF. These findings suggest that 5-OH-HxMF creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in HL-60 cells. Meanwhile, ROS were proven an important inducer in this apoptotic process. The C-5 hydroxyl on the ring of 5-OH-HxMF was found to be essential for the antiproliferative and apoptosis-inducing activity. Our study identified the novel mechanisms of 5-OH-HxMF-induced apoptosis and indicated that these results have significant applications as potential chemopreventive and chemotherapeutic agents.  相似文献   

4.
Epithelial to mesenchymal transition (EMT) is critical for the progression, invasion, and metastasis of epithelial tumorgenesis. Here, we provided molecular evidence associated with the antimetastatic effect of green tea polyphenol epigallocatechin-3 gallate (EGCG) in an oral squamous cell culture system by showing a nearly complete inhibition on the invasion (P < 0.001) of squamous cell carcinoma-9 (SCC-9) cells via a reduced expression of matrix metalloproteinase-2 (P < 0.001) and urokinasetype plasminogen activator (P < 0.001). EGCG exerted an inhibitory effect on cell migration (P < 0.001), motility (P < 0.001), spread, and adhesion (P < 0.001). We performed Western blot to find that EGCG inhibited p-focal adhesion kinase (p-FAK), p-Src, snail-1, and vimentin, indicating the anti-EMT effect of EGCG in oral squamous cell carcinoma. EGCG was also sufficient to inhibit phorbol-12-myristate-13-acetate-induced cell invasion and matrix metalloproteinase-9 expression, as evidenced by its inhibition on the tumor growth of SCC-9 cells in vivo via cancer cell xenografted nude mice mode. These results suggested that EGCG could reduce the invasion and cell growth of tumor cells, and such a characteristic may be of great value in developing a potential cancer therapy.  相似文献   

5.
Berry fruits are widely consumed in our diet and have attracted much attention due to their potential human health benefits. Berries contain a diverse range of phytochemicals with biological properties such as antioxidant, anticancer, anti-neurodegerative, and anti-inflammatory activities. In the current study, extracts of six popularly consumed berries--blackberry, black raspberry, blueberry, cranberry, red raspberry and strawberry--were evaluated for their phenolic constituents using high performance liquid chromatography with ultraviolet (HPLC-UV) and electrospray ionization mass spectrometry (LC-ESI-MS) detection. The major classes of berry phenolics were anthocyanins, flavonols, flavanols, ellagitannins, gallotannins, proanthocyanidins, and phenolic acids. The berry extracts were evaluated for their ability to inhibit the growth of human oral (KB, CAL-27), breast (MCF-7), colon (HT-29, HCT116), and prostate (LNCaP) tumor cell lines at concentrations ranging from 25 to 200 micro g/mL. With increasing concentration of berry extract, increasing inhibition of cell proliferation in all of the cell lines were observed, with different degrees of potency between cell lines. The berry extracts were also evaluated for their ability to stimulate apoptosis of the COX-2 expressing colon cancer cell line, HT-29. Black raspberry and strawberry extracts showed the most significant pro-apoptotic effects against this cell line. The data provided by the current study and from other laboratories warrants further investigation into the chemopreventive and chemotherapeutic effects of berries using in vivo models.  相似文献   

6.
7.
The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by <10 microM falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.  相似文献   

8.
This research aimed to investigate erythrodiol, uvaol, oleanolic acid, and maslinic acid scavenging capacities and their effects on cytotoxicity, cell proliferation, cell cycle, apoptosis, reactive oxygen species (ROS) level, and oxidative DNA damage on human MCF-7 breast cancer cell line. The results showed that erythrodiol, uvaol, and oleanolic acid have a significant cytotoxic effect and inhibit proliferation in a dose- and time-dependent manner. At 100 μM, erythrodiol growth inhibition occurred through apoptosis, with the observation of important ROS production and DNA damage, whereas uvaol and oleanolic acid growth inhibition involved cell cycle arrest. Moreover, although all tested triterpenes did not show free radical scavenging activity using ABTS and DPPH assays, they protected against oxidative DNA damage at the concentration 10 μM. Uvaol and oleanolic and maslinic acids, tested at 10 and 100 μM, also reduced intracellular ROS level and prevented H(2)O(2)-induced oxidative injury. Overall, the results suggest that tested triterpenes may have the potential to provide significant natural defense against human breast cancer.  相似文献   

9.
A known triterpenoid, β-amyrin (1), and a known and a new phloroglucinol, cohulupone (2) and garcinielliptone P (3), were isolated from the pericarp and heartwood and seed of Garcinia subelliptica, respectively. A new xanthonolignoid, hyperielliptone HF (4), was isolated from the heartwood of Hypericum geminiflorum. The new compounds were established by analysis of their spectroscopic data. Compounds 1-3 showed an inhibitory effect on xanthine oxidase (XO). Treatment of NTUB1, a human bladder cancer cell, with 1 or 1 cotreated with cisplatin for 24 h resulted in a decreased viability of cells. Exposure of NTUB1 to 1 or 1 cotreated with cisplatin for 24 h significantly increased the level of production of reactive oxygen species (ROS). Flow cytometric analysis indicated that treatment of NTUB1 with 1 or 1 cotreated with cisplatin led to the cell cycle arrest, accompanied by an increase in the extent of apoptotic cell death in 1 or 1 combined with cisplatin-treated NTUB1 after 24 h. These data suggested that the presentation of cell cycle arrest and apoptosis in 1 or 1 combined with cisplatin-treated NTUB1 for 24 h was mediated through an increased amount of ROS in cells exposed to 1 or 1 cotreated with cisplatin.  相似文献   

10.
There is great interest in the potential chemopreventive activity of resveratrol against human cancers. However, there are conflicting results on its growth inhibitory effect on normal cells. This project examined the differential effect of resveratrol at physiologically relevant concentrations on nonmalignant (WIL2-NS) and malignant (HL-60) cell lines and compared the underlying mechanisms via cell cycle modulation, apoptosis induction, and genotoxicity potential. Twenty-four hours of exposure to resveratrol was toxic to WIL2-NS and HL-60 cells in a dose-dependent manner. WIL2-NS cells regrew 5 times more than HL-60 cells by 120 h after the removal of 100 microM resveratrol (p < 0.05). Furthermore, significant alterations in cell cycle kinetics were induced by resveratrol in HL-60 cells, but were to a lesser extent for WIL2-NS cells. The proportion of apoptosis was also 3 times higher in HL-60 cells as compared to WIL2-NS cells for 100 microM resveratrol (p < 0.05). In conclusion, resveratrol preferentially inhibited the growth of HL-60 cells via cell cycle modulation and apoptosis induction and subsequently directed the cells to irreversible cell death, whereas the effect on WIL2-NS cells was largely reversible.  相似文献   

11.
Citrus flavonoids are reported to be promising bioactive compounds against hyperlipidemia and lipid biosynthesis. However, the mechanism of the lipid lowering effect by flavonoids remains unknown. The present study examines the effect of some flavanones on the adipocytic conversion of the human preadipocyte cell line, AML-I. Among four structure-related flavanones including naringenin, naringenin-7-rhamnoglucoside (naringin), hesperetin, and hesperetin-7-rhamnoglucoside (hesperidin), the aglycones such as naringenin and hesperetin exhibited the growth arrest of AML-I cells. When the cells were examined by Annexin V-FITC staining method, it was noticed that growth arrest was induced by apoptotic cell death. In the study of apoptosis-related protein in the naringenin-treated cells, anti-apoptotic proteins such as p-Akt, NF-kappaB, and Bcl-2 were decreased, and pro-apoptotic protein Bad was accumulated by Western blot analysis. Interestingly, exposure of AML-I cells to naringenin or hesperetin during short-term cultures increased cytoplasmic lipid droplets by Sudan Black B staining. Furthermore, expression of fatty acid synthase (FAS) and peroxisome proliferator activated receptor (PPAR)-gamma was enhanced in naringenin-treated cells. These data suggest that apoptosis by flavanones does not inhibit the adipocytic conversion of AML-I preadipocytes. The result also indicates that adipocyte may not be a direct target for the lipid-lowering activity of the flavanones.  相似文献   

12.
13.
Previously, we observed that luteolin effectively inhibited cell growth and induced apoptosis in HL-60 cells. In that study, we also explored the modulatory effects and molecular mechanisms of pyrrolidine dithiocarbamate (PDTC) on the cytotoxicity of luteolin to HL-60 cells. In this study, we found that PDTC was able to inhibit luteolin-induced cell apoptosis in a dose-dependent manner. When HL-60 cells were treated with PDTC for 0.5 h before 60 microM luteolin treatment, the DNA ladder disappeared. Moreover, flow cytometry showed that PDTC had dose dependently decreased the percentage of apoptotic HL-60 cells and had not interfered with luteolin's ability to change the mitochondrial membrane potential or its ability to trigger the release of cytochrome c to cytosol. Detection by Western blotting, however, did show that PDTC had interfered with luteolin's ability to cleave poly(ADP-ribose)polymerase and DNA fragmentation of factor-45. Three hours after the PDTC-pretreated HL-60 cells were treated with 60 microM luteolin, the product cleaved from Akt started to appear. Therefore, not only was PDTC able to stop the apoptosis of HL-60 cells treated with luteolin, it was also found to increase phosphorylation of Akt and caspase-9. These results suggest that in the luteolin-induced apoptotic pathway, phosphorylation of procaspase-9 by survival signals might play an important role in the ultimate fate of HL-60 cells.  相似文献   

14.
Garcinol, a polyisoprenylated benzophenone, was purified from Garcinia indica fruit rind. The effects of garcinol and curcumin on cell viability in human leukemia HL-60 cells were investigated. Garcinol and curcumin displayed strong growth inhibitory effects against human leukemia HL-60 cells, with estimated IC(50) values of 9.42 and 19.5 microM, respectively. Garcinol was able to induce apoptosis in a concentration- and time-dependent manner; however, curcumin was less effective. Treatment with garcinol caused induction of caspase-3/CPP32 activity in a dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly(ADP-ribose) polymerase (PARP). Pretreatment with caspase-3 inhibitor inhibited garcinol-induced DNA fragmentation. Treatment with garcinol (20 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. The cleavage of D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. Of these, Bcl-2, Bad, and Bax were studied. The level of expression of Bcl-2 slightly decreased, while the levels of Bad and Bax were dramatically increased in cells treated with garcinol. These results indicate that garcinol allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. It is suggested that garcinol-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by garcinol may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

15.
Monascus pigments have been reported to possess anticancer effects in various cancer cells; however, the molecular mechanisms of their anticancer properties remain largely unknown. Monascuspiloin is an analogue of the Monascus pigment monascin, and its anticancer growth activity against human prostate cancer cells was evaluated using in vitro and in vivo models. Monascuspiloin effectively inhibits the growth of both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. Monascuspiloin preferentially induces apoptosis in LNCaP cells by attenuating the PI3K/Akt/mTOR pathway. In androgen-independent PC-3 cells, monascuspiloin induces G2/M arrest and autophagic cell death by an AMPK-dependent pathway. Induction of autophagy in PC-3 cells further sensitizes cells to apoptosis induced by monascuspiloin. Monascuspiloin inhibits tumor growth in nude mice bearing PC-3 xenografts through induction of apoptosis and autophagy. This study is the first to demonstrate that monascuspiloin has therapeutic potential for the treatment of both androgen-dependent and -independent human prostate cancers.  相似文献   

16.
The objective of this study was to investigate the antiproliferative effect and the mechanism of the methanol extracts of mycelia (MEM) form Antrodia camphorata in submerged culture toward HepG2 cells. The results showed that MEM-induced cell apoptosis involved up-regulation of Fas and down-regulation of Bcl-2, DR3, DR4, TNFRI, and TNFRII in HepG2 cells, while no changes on the levels of Bax, Bid, Bad, and Bak protein were observed. On the basis of these results, the involvement of the Fas/Fas ligand (FasL) death-receptor pathway, in MEM-induced apoptosis in HepG2 cells, was investigated. The apoptosis inducing activity was significantly enhanced by a Fas activator and inhibited by a Fas antagonist. To know about the effect of MEM on the activation of the apoptotic pathway, the adenovirus transfected with Bcl-2 was infected on HepG2 cells. The data showed that the percentage of apoptotic cells induced by MEM in Bcl-2-infected HepG2 (Bcl-2 overexpression) was not significantly different from that of uninfected HepG2. These results demonstrate that MEM induces HepG2 apoptosis through inhibition of cell growth and up-regulation of Fas/FasL to activate the pathway of caspase-3 and -8 cascades.  相似文献   

17.
The effect of the naturally occurring polyphenol resveratrol (3,5,4'-trihydroxy-trans-stilbene; RES) on growth, cell cycle, and cyclins A, E, and B1 expression was investigated in the human SK-Mel-28 melanoma cell line. In addition, the structurally related compounds 4-hydroxy-trans-stilbene (4HST), piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene (PICE), and 4-trans-stilbenemethanol (4STMe) were also assayed in order to investigate the requirements of stilbenes to exert activity against melanoma cells. Both RES and 4HST inhibited cell growth in a dose- and time-dependent manner and upregulated the expression of cyclins A, E, and B1 with subsequent irreversible arrest of melanoma cells in the S-phase, concomitant with a decrease in G0/G1 and G2/M phases. In addition, potent apoptosis-mediated cell death was detected with the annexin V assay whereas no apoptosis was observed by flow cytometry, which encourages the assay of different methodologies to evaluate the effect of polyphenols on cell lines. The effect of PICE was not evaluated because of its instability in the reaction medium. No effect on cell cycle and cyclins expression was observed when 4STMe was assayed, which supported the critical requirement of the 4'-hydroxystyryl moiety to exert the above effects. In addition, this structural requirement also influenced the cellular uptake of stilbenes. The presence of two extra hydroxyl groups in RES increased its cytotoxicity whereas it diminished its efficiency to inhibit cell growth, upregulate cyclins expression, and arrest cell cycle in the S-phase with respect to 4HST. The present study suggests that the antimelanoma properties of dietary stilbenes, such as grape RES, cannot be ruled out, taking into account previous studies concerning the relationship between plasma and tissue concentrations and pharmacological activity of RES in animal models.  相似文献   

18.
The growth inhibitory effect of a mixture of trans, trans conjugated linoleic acid isomers (t, t CLA) was investigated in a human breast cancer cell line, MCF-7, with references to c9, t11 CLA, t10, c12 CLA, and linoleic acid. The t, t CLA treatment effectively induced a cytotoxic effect in a time-dependent (0-6 days) and concentration-dependent (0-40 microM) manner, as compared to the reference and control treatments. The apoptotic parameters were measured on cells treated with 40 microM t, t CLA for 4 days. The occurrence of the characteristic morphological changes and DNA fragmentation confirmed apoptosis. The t, t CLA treatment led to an increase in the level of p53 tumor suppressor protein and Bax protein, but suppressed the expression of Bcl-2 protein. In addition, cytochrome c was released from the mitochondria into the cytosol, and the activation of caspase-3 led to the cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, the composition of the linoleic and arachidonic acids was decreased in cellular membranes. These findings suggest that incorporation of t, t CLA in the membrane induces a mitochondria-mediated apoptosis that can enhance the antiproliferative effect of t, t CLA in MCF-7 cells.  相似文献   

19.
Shikonin is a main constituent of the roots of Lithospermum erythrorhizon that has antimutagenic activity. However, its other biological activities are not well-known. Shikonin displayed a strong inhibitory effect against human colorectal carcinoma COLO 205 cells and human leukemia HL-60 cells, with estimated IC(50) values of 3.12 and 5.5 microM, respectively, but were less effective against human colorectal carcinoma HT-29 cells, with an estimated IC(50) value of 14.8 microM. Induce apoptosis was confirmed in COLO 205 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45) were accompanied by activation of caspase-9 and -3 triggered by shikonin in COLO 205 cells. Here, we found that shikonin-induced apoptotic cell death was accompanied by upregulation of p27, p53, and Bad and down-regulation of Bcl-2 and Bcl-X(L), while shikonin had little effect on the levels of Bax protein. Taken together, we suggested that shikonin-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by shikonin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

20.
A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene could prevent the growth and progression of colorectal tumor in a mouse xenograft model. Bioluminescence imaging, histopathological, immunofluorescence (IFC), and immunohistochemical (IHC) staining results indicated that lycopene could effectively suppress the growth and progression of colon cancer in tumor-bearing mice. The results demonstrated that lycopene significantly suppressed the nuclear expression of PCNA and β-catenin proteins in tumor tissues. Consumption of lycopene could also augment the E-cadherin adherent molecule and nuclear levels of cell cycle inhibitor p21(CIP1/WAF1) protein. The chemopreventive effects of lycopene were associated with suppression of COX-2, PGE(2), and phosphorylated ERK1/2 proteins. Furthermore, the inhibitory effects of lycopene were inversely correlated with the plasma levels of matrix metalloproteinase 9 (MMP-9) in tumor-bearing mice. These results suggested that lycopene could act as a chemopreventive agent against the growth and progression of colorectal cancer in a mouse xenograft model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号