首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The relative importance of ammonia volatilization and denitrification as loss processes following the application of urea to flooded rice by the traditional method was assessed at four sites with different characteristics in the Philippines. The effect of reducing ammonia loss on denitrification and total N loss was also studied. The total N loss was determined by a 15N-balance method and ammonia volatilization was assessed by a bulk aerodynamic method following the application of urea to small plots (4.8×5.2 m). As run-off was prevented and leaching losses were negligible, the denitrification loss was assessed as the difference between total N loss and ammonia loss. When urea was broadcast into the floodwater at transplanting, the ammonia loss varied from 10% to 56% of the applied N. Loss was smallest at Aguilar where wind speeds were low and the greatest at Mabitac where floodwater pH values and temperatures were high and the winds were strong. The ammonia loss was reduced at all sites by incorporating the urea into the soil by harrowing. However, the reduction achieved varied markedly between sites, with the largest reduction (from 56% to 7% loss of the applied N) being observed at Mabitac. The total N lost from the basal application into the floodwater ranged from 59% to 71% of the applied N. Incorporating the urea by harrowing reduced the total N loss at two sites, increased the total N loss at the third site, and had no effect at the fourth site. The denitrification losses ranged widely (from 3% to 50% of the applied N) when urea was broadcast into the floodwater at the four sites. The denitrification loss was low when the ammonia loss was high (Mabitac) and high when the ammonia loss was low (Aguilar). Reducing ammonia losses by incorporating the urea into the flooded soil resulted in increased denitrification losses at three of the sites and appeared to have no effect on denitrification at the fourth site. The results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N loss, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.  相似文献   

2.
Effect of urease inhibitors on urea hydrolysis and ammonia volatilization   总被引:3,自引:0,他引:3  
Summary Two laboratory incubation experiments were conducted to study the effects of the urease inhibitors hydroquinone (HQ), phenyl phosphorodiamidate (PPDA), and N-(n-butyl) thiophosphoric triamide (NBPT) in retarding the hydrolysis of urea, in the evolution of mineral N, and in reducing NH3 loss through volatilization, under aerobic and waterlogged conditions, both at 25°C. NBPT generally exceeded PPDA and HQ in the ability to delay urea hydrolysis and NH inf4 sup+ accumulation under aerobic conditions, whereas PPDA retarded these activities more effectively under anaerobic conditions. HQ was less effective than the other two urease inhibitors. Under aerobic conditions, 20% of the applied urea was lost through NH3 volatilization after 5 days in the system without an inhibitor. With the addition of HQ and PPDA, the volatilization was delayed by 1 day but not eliminated. NBPT effectively decreased the NH3 loss, from 20 to 3% of the applied urea. A more severe N loss (40%) occurred in the waterlogged system. HQ had little effect on NH3 volatilization. PPDA decreased the NH3 loss from 40 to less than 20% of the applied urea. The effectiveness of NBPT decreased under anaerobic conditions. It was concluded that urease inhibitors can reduce NH3 volatilization following the application of urea. However, environmental conditions might have an important influence on the effectiveness of these inhibitors.  相似文献   

3.
Summary The behaviour of urease activity, ammoniacal N concentrations and pH in flood water and that of ammonia flux was investigated in a water-logged soil either in the presence or in the absence of rice and with three different treatments (control, urea and urea + phenyl phosphorodiamidate). In the presence of the phenyl phosphorodiamidate (PPD), that is a urease inhibitor, increases in ammoniacal N concentrations and in ammonia evolution were delayed but not eliminated. The degradation and/or the inactivation of PPD might have occurred, thus removing the inhibition of the enzyme activity.  相似文献   

4.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

5.
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH 4 + oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH 4 + oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH 4 + oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown.  相似文献   

6.
用杂交水稻中优679为试验材料,研究氮肥运筹对晚稻产量和氮素利用率的影响。结果表明,在目标产量7 500 kg/hm2,总施氮量150 kg/hm2条件下氮肥运筹不同处理中,以基蘖肥∶穗肥=6∶4且基肥采用碳铵深施方式,其实际产量、齐穗后干物质生产量、成熟期干物质积累量、氮素利用率等均为最高。  相似文献   

7.
Summary The contribution of associative N2 fixation to the N nutrition of lowland rice was estimated in a long-term pot experiment with ten consecutive crops of rice. The experiment comprised two N and two K levels with wet (WF) and dry fallow (DF) between the cropping seasons. Growth of N2-fixing cyanobacteria was prevented. Greatest yields were obtained in the high NK fertilizer treatment, but with continuation of the experiment yields responsed more to DF than to WF. Nitrogenase activity, however, was favoured by WF. Higher K application increased and higher N application decreased nitrogenase activity. Under WF treatments the organic C and total N contents of the soil remained unchanged during the experimental period, but alternate drying and flooding in DF treatments caused a decline. Lower N fertilizer rates in the second five-crop period did not affect yields, but increased the ratio of N removed to N applied. For the ten-crop period the estimated N balance was positive in the low-N and negative in the high-N treatments. N balances were also established separately for both the first and the second halves of the ten-crop period. In the first period N losses were higher, and the N balance was mostly negative. In the second period only high-N combined with low-K fertilization resulted in a negative N balance. DF favoured N losses in the first but not in the second period. The highest N gain in the second period was found in the DF treatment with low-N and high-K application. In this treatment, nearly one-quarter of the N taken up by the above-ground parts of the plants could be ascribed to associative N2 fixation. In the corresponding treatment with the higher N level and a 49% higher yield, the contribution of fixed N declined to less than 5%. When harvested straw contained more than 10 mg N g–1, the N balance was mostly negative, while at N contents less than 10 mg N g–1, the N balance was generally positive.  相似文献   

8.
Summary Sources of N used by cropped and intercropped cowpeas and rice were determined by the 15N isotope-dilution technique. The biological efficiency of intercropping cowpeas and rice was assessed by calculating the land equivalent ratio of dry matter yield, total N, and uptake of N. A reduced N uptake by both cowpeas and rice during mixed cropping was attributed to mutual competition, with both crops competing effectively for the scarce environmental resources. The lack of a significant difference in the uptake of fertilizer and soil N by mixed-crop rice and cowpeas is an indication that the soil N was sufficient and that the mixed cropping did not create any imbalance in soil and fertilizer N uptake. The land equivalent ratio ranged between 120% and 180% for shoot dry matter and total N, showing that biological efficiency was increased by intercropping cowpeas with rice. The proportion of N derived from the atmosphere by mono- and intercropped cowpeas was not significantly different, showing that the potential of cowpeas to fix N2 was independent of the cropping system, since the rice did not stimulate the cowpeas to fix more N2.  相似文献   

9.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

10.
A pot experiment was conducted to examine how soil amendment with water-treatment residue (WTR) containing polysilicate-iron affected dissolved arsenic (As) in flooded soils and As uptake by rice plants (Oryza sativa L.). The WTR was applied at a rate of 0 (control), 5, 10 or 20 t ha?1. Simple linear regression analyses showed significant negative relationships between the concentrations of dissolved As in soil solution and WTR application rates at all sampling times, probably due to adsorption of As onto ferrihydrite in the WTR. Compared to As concentrations in rice plants grown on control soil, the concentrations in plants grown on WTR-treated soils decreased by 20.1–41.6% in straw (stems and leaves), 19.8–31.7% in husk and 18.6–21.0% in grain. The regression analyses demonstrated that the concentration and content of As in rice are negatively correlated with WTR application rate. Total As content was 16.5–32.0% lower in rice shoots grown on WTR-treated soils than on control soil. The percentage of each As species in grain decreased in the following order: As(III) » dimethylarsinic acid » As(V). The application of WTR did not change the As speciation in grain. Silicon contents in shoot significantly increased with application of WTR, indicating the potency of WTR as a silicate fertilizer. Taken together, our results indicate that WTR containing polysilicate-iron promises to be a practical amendment for stabilizing As and attenuating As uptake by rice plants.  相似文献   

11.
Summary A field study was undertaken to examine the effects of various management strategies on wheat (Triticum aestivum L.) performance and N cycling in an intensively cropped soil. Microplots receiving 100 kg N ha–1 as15NH4 + 15NO3 at sowing, tillering or stem elongation were compared with unfertilized microplots. Stubble from the previous rice crop was either incorporated, burnt without tillage, burnt then tilled or retained on the surface of untilled soil. Wheat grain yield ranged from 1.5 to 5.1 t ha and was closely related to N uptake. Plant accumulation of soil N averaged 36 kg N ha–1 (LSD 5% = 10) on stubble-incorporation plots and 54 kg N ha–1 on stubble-retention plots. Fertilizer N accumulation averaged 18 kg N ha–1 (LSD 51% = 6) on stubble-incorporation plots and 50 kg N ha–1 on stubble-retention plots. Tillage had little effect on burnt plots. Delaying N application from sowing until stem elongation increased average fertilizer N uptake from 26 to 39 kg N ha–1 (LSD 5% = 6), but reduced soil N uptake from 50 to 37 kg N ha (LSD 5% = 10).Immobilization and leaching did not vary greatly between treatments and approximately one-third of the fertilizer was immobilized. Less than 1% of the fertilizer was found below a depth of 300 mm. Incorporating 9 t ha–1 of rice stubble 13 days before wheat sowing reduced net apparent mineralization of native soil N from 37 to 3 kg ha–1 between tillering and maturity. It also increased apparent denitrification of fertilizer N from an average 34 to 53 kg N ha–1 (LSD 5% = 6). N loss occurred over several months, suggesting that denitrification was maintained by continued release of metabolizable carbohydrate from the decaying rice stubble. The results demonstrate that no-till systems increase crop yield and use of both fertilizer and soil N in intensive rice-based rotations.  相似文献   

12.
This experiment was carried out in both pot and field conditions to assess the effects of three native potassium solubilizing bacteria (KSB: including Pantoea agglomerans, Rahnella aquatilis and Pseudomonas orientalis which were isolated from paddy fields) on grain yield (GY), dry matter remobilization (DMR) and translocation (DMT), dry matter translocation efficiency (DME) and contribution of pre-anthesis assimilates (CA) from the leaves and leaves plus stem to the grain in rice (Oryza sativa L). The results indicated that the KSBs significantly increased GY around 20–38% in the pot and 20–52% in the field, especially when half of the recommended potassium fertilizer was applied (K2So4, 44% K2O) as compared to the control. Results also showed that the KSB inoculations and chemical fertilizers had a significant effect on DMR, DMT, DME and CA. In conclusion, these KSBs can be utilized as bio-inoculants for half reduction of K chemical fertilizer consumption in rice production systems.  相似文献   

13.
Foliar application of fertilizers can guarantee the availability of nutrients to rice for obtaining higher yield. Rice responds favorably to macro- and micronutrients and the tolerance to salinity hazards improves by decreasing the N/S ratio. In this study, results showed that nutrient concentrations (g L?1) for rice are: nitrogen (N) 108.0, phosphorous (P2O5) 6, potassium (K2O) 81.0, calcium (CaO) 15.0, and magnesium (MgO) 6 g L?1; and for iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), boron (B), molybdenum (Mo) and silicon (Si) the recommended concentrations are 0.6, 0.45, 0.21, 0.06, 0.09, 0.0002 and 0.004 g L?1, respectively. A significant increase was recorded in number of panicles m?2, 1000 grain weight, biological yield and grain yield with foliar application of nutrients. Five foliar applications of nutrients resulted in maximum number of panicles m?2, grains panicle?1, 1000 grain weight and biological yield. It is concluded that five foliar applications of balanced amounts of fertilizers at the seedling stage (two sprays), tillering (single spray) and at panicle initiation and panicle differentiation (two sprays) helped in enhancing yield and yield components of rice. In this research, five foliar applications produced the smallest damaging effects of blast (Pyricularia oryzae) in rice.  相似文献   

14.
Summary A greenhouse experiment was conducted to study the changes in different organic fractions of soil N after application of N fertilizer as organic N alone or in combination with inorganic N. The decrease in the amount of hydrolysable NH4 + and amino-acid N was positively related to mineral-N production, grain yield and N uptake, but changes in the amount of amino sugars were not related to these three parameters. The non-hydrolysable N fraction was negatively related to grain yield and N uptake. The average mineral-N production during incubation was highly correlated with both grain yield and N uptake.  相似文献   

15.
Organic-N fertilizers in the form of flood-tolerant, leguminous, stem-nodulating Sesbania rostrata and Aeschynomene afraspera may be useful alternatives to resource-poor rice farmers if applied as green manure. Therefore, the accumulation of N by these green manure species and their effect on the performance and yield of wetland rice (IR 64) was examined at four different sites in Luzon, Philippines. Soils deficient in N, P, and K were selected and compared with the fertile Maahas clay of the International Rice Research Institute (IRRI) at Los Baños. The green manure plants were grown under flooded conditions for 49 days in the wet season of 1987, chopped, and then ploughed in before transplanting rice seedlings. In a second experiment, the effect of S. rostrata green manure was studied under rainfed conditions. All green manure treatments were compared to an urea treatment (60 kg N ha–1) and an untreated control. Both legumes developed well, even on the marginally productive soils. S. rostrata accumulated up to 190 kg N ha–1 and A. afraspera even accumulated 196 kg N ha–1 in the shoots. In all treatments, green manure increased grain yield significantly (P=0.05) over the untreated control, by 1.3–1.7 Mg ha–1. The yields were comparable to those obtained with 60 kg N ha–1 of urea fertilizer. S. rostrata caused the highest grain yield, of 6.5 Mg ha–1 on the Maahas clay soil of IRRI. The apparent release of exchangeable NH 4 + -N in the soils after green manuring and the rice grain yield response showed that both green manure species may provide sufficient available N throughout the development of IR 64 in the wet season. In the rainfed marginal soil site, green manure with S. rostrata produced even higher rice grain yields than urea. Green manure therefore seems particularly attractive for poor farmers on marginally productive soils, at least as a temporary strategy to improve yield and yield sustainability.  相似文献   

16.
Genetic Resources and Crop Evolution - In this investigation, recombinant inbred lines (RILs) population derived from PAU 201 (high yielding) and Palman 579 (high iron and zinc content) varieties...  相似文献   

17.
Summary Isouron, a pre-emergence herbicide, inhibited the growth of rice seedlings in a nutrient solution; the critical concentration was about 0.10 mg l-1. Isotope studies showed that isouron, added to the nutrient solution, was observed by the rice roots and translocated rapidly to the shoot. In rice seedlings, isouron was converted to six known metabolites, 3-(5-(1-dimethyl-2-hydroxy-ethy)-3-isoxazolyl]urea, 3-(5-tert-butyl-3-isoxazolyl)-1-methylurea, 3-(5-tert-butyl-3-isoxazolyl)ure, 3-amino-5-tert-butylisoxazole, 3-[5-(1,1-dimethyl-2-hydroxyethyl)-3-isoxazolyl]-1-dimethylurea, and 3-[5-(1,1-dimethyl-2-hydroxyethyl)-3-isoxazolyl]-1-methylurea, and two unknown metabolites.  相似文献   

18.
Abstract

Rice is mostly transplanted under puddled low land soil conditions in India, where Zinc (Zn) deficiency is a common problem. The objective of this study was to find out the efficacy of split application of Zn on growth and yield of rice in an inceptisol. The split application of Zn as ZnSO4 · 7H2O performed better than its single basal application, while the split application of Zn-EDTA did not show any significant difference on yield and yield components of rice over its single basal application. Zn-EDTA was found to be better for growth and yield of rice among the two sources of Zn. The soil application of Zn at 1.0 kg ha?1 as Zn-EDTA (T7) recorded highest grain yield of 5.42 t ha?1, filled grain percentage of 90.2%, 1000-grain weight of 25.41 g and number of panicles m?2 of 452. The Zn content of grain and straw were found to be maximum in the treatment T7 i.e. 38.19 and 18.27 mg kg?1, respectively. Linear regression studies indicated that grain yield of rice is significantly influenced by Zn content of grain, Zn content of straw and DTPA extractable Zn content of soil at the level of 95.96, 96.74 and 95.57%, respectively.  相似文献   

19.
Laboratory incubation experiments were conducted to study the influence of increasing concentrations of N-(n-butyl)phosphorothioic triamide (NBPT) on NH3 volatilization and rate of urea hydrolysis and evolution of mineral N in Ozzano, Rimini and Carpi soils with different physicochemical characteristics. Low concentrations of NBPT reduced NH3 losses due to volatilization after urea fertilization and the effectiveness of the inhibitor was related to the soil characteristics (e.g. high concentrations of organic C and sand). After 15 days of incubation, no significant reductions of losses were found for any of the NBPT concentrations employed in Rimini soil. The application of NBPT led to a considerable reduction of the formation of nitrite. This process was completely annulled with the highest dose of NBPT (0.5% w/wurea) in the Carpi soil after 15 days. In Rimini soil, however, the use of NBPT was less effective in influencing nitrite formation. The use of NBPT favoured accumulation of nitrate proportional to the NBPT concentration employed while it had no influence on the NH inf4 sup+ fixation by 2:1 layer silicates. The data obtained support previous evidence that NBPT is effective in reducing the problems encountered in using urea as fertilizer. However, environmental conditions and soil physicochemical characteristics may have an important influence on the effectiveness of NBPT.  相似文献   

20.
Upland rice is a valuable base population for protecting against genetic erosion and broadening the gene pool of rice germplasms, and rice is also the staple food of more than 100 million people across the world. Therefore, an experiment was conducted to elucidate the performances of 27 globally diverse blast-resistant upland rice genotypes in terms of morphological, physiological and yield trait characteristics and to determine the correlations between and assess the diversity among these characteristics. All of the genotypes were evaluated in a randomised complete block design with three replications. Analysis of variance revealed 18 traits with significant to highly significant variations among themselves. The BRRI dhan42, BRRI dhan43, Ja Loy, C, Choke Tang and Chirikata 2 genotypes matured early, and the Chirikata 2, C, Choke Tang, BRRI dhan43 and Padi Beleong genotypes were best in terms of yield. The greatest heritability was recorded for the numbers of filled grains/panicle and the yield/plant, which demonstrated that these traits can be successfully transferred to the offspring if selection for these characteristics is performed in a hybridisation programme. The 27 genotypes were grouped into six clusters based on the contributing morphological, physiological and yield characteristics. The first four principal components accounted for 40, 59, 70 and 79% of the total variation, respectively, which indicated abundant genetic differences between these genotypes. The Chirikata 2, C, Choke Tang and BRRI dhan43 were selected as the best genotypes and could be used as valuable resources for high-yielding, early maturing, blast-resistant cultivars and parental sources for hybridisation programmes for challenging environments in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号