首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用植物数量性状"主基因+多基因混合遗传模型"方法,分析了辽粳371×辽梗326一次枝梗数(primary branch number,PBN)性状的遗传效应.结果表明:一次枝梗数性状的遗传符合两对等加性主基因+加性-显性多基因模型(E-4),两对主基因的加性效应相同,均为-0.618;主基因遗传率为48.4%.经SSR标记,利用Qgene软件对该F2代群体进行QTL分析,在第1和第8染色体上定位到两个基因位点qPBN-1-1和qPBN-8-1,加性效应分别为-0.736和-0.388,贡献率分别为11.7%和10.8%.遗传分析与QTL定位结果基本一致.  相似文献   

2.
利用半矮生水稻品种沈稻4号(P_1)和中高秆晶系沈农637(P_2)及其杂交后代F_1、F_2群体,运用主基因+多基因混合遗传模型对株高的遗传进行了联合分离分析.结果表明:株高性状受两对加性-显性-上位性主基因和加性-显性-上位性多基因共同控制.两对主基因的加性效应近似相等,分别为-4.742和-4.741,主基因遗传力为47.13%,多基因遗传力为41.33%.  相似文献   

3.
采用主基因 多基因混合遗传模型和分离世代加不分离世代联合分析的方法,对云南稻种粳掉3号与十和田构建的近等基因系(NILs)的衍生后代家系群体的孕穗期耐冷性状进行遗传研究。结果表明,结实率和穗长性状均受2对加性-显性-上位性主基因 加性-显性多基因(E-1)构成,主基因遗传率分别为85.64%和27.51%;株高和穗下节长均受2对主基因 多基因共同控制。独立的2对主基因和多基因都存在加性-显性-上位性效应,主基因遗传率分别为48.88%和54.19%;穗颈长是由2对加性-显性主基因 加性-显性多基因(E-2)构成,主基因遗传率为91.37%。  相似文献   

4.
赵刚  吴子恺  王兵伟 《安徽农业科学》2007,35(17):5096-5098,5134
以2个微胚乳超高油玉米组合的P1、F1、P2、B1、B2和F2 6个世代为材料,采用数量性状的主基因+多基因混合遗传模型多世代联合分析法,研究了株高和穗位高的遗传。对2个不同组合的研究结果表明:组合I株高的遗传符合加性-显性-上位性多基因遗传模型;穗位高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为27.27%、37.36%和58.59%。组合II株高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为18.41%、1.03%和12.61%;穗位高的遗传符合加性-显性-上位性多基因遗传模型。  相似文献   

5.
选用水稻直立穗型品种辽粳5号和弯曲穗型品种丰锦配制辽粳5号/丰锦组合,通过对P1、P2、F1、F2、B1和B2的颈穗弯曲度和穗角的调查,利用主基因+多基因混合遗传模型联合分离分析了粳稻穗直立性的遗传规律.结果表明.直立穗型性状的遗传无论是从颈穗弯曲度评价,还是利用穗角评价都符合两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模式.且两对主基因间都存在互作.从F2估计,颈穗弯曲度在辽粳5号/丰锦组合的主基因遗传率为88.41%,穗角在该组合的主基因遗传率为89.04%.  相似文献   

6.
【目的】研究甜玉米茎秆强度性状的遗传模型,为甜玉米抗倒伏育种提供理论依据。【方法】以2个茎秆强度差异较大的自交系T49(抗倒伏)和T56(易倒伏)为亲本配制杂交组合,用"主基因+多基因混合遗传模型"分析方法对甜玉米茎秆强度性状进行分析。【结果】茎秆穿刺强度最佳遗传模型为D-0(1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型),BC_1、BC_2、F_2主基因遗传率分别为74.07%,45.30%,57.78%;茎秆抗压强度最佳遗传模型为E-0(2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型),BC_1、BC_2、F_2主基因遗传率分别为44.15%,40.83%,62.97%;茎秆弯折性能最佳遗传模型为E-0(2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型),BC_1、BC_2、F_2主基因遗传率分别为69.79%,40.89%,89.46%,3个性状均以主基因遗传为主。【结论】在育种实践中,对早期世代可进行玉米抗倒伏性遗传改良和选择,同时注意一定的环境因素,采用聚合回交或轮回选择来累积微效基因以提高育种效率。  相似文献   

7.
本研究以栽培种花生品系05D677与品种中花12号为亲本材料,正反交构建2个F_2分离群体,根据主基因+多基因分离分析方法,进行子仁性状遗传分析。结果表明:2个F_2群体中花生子仁的仁长、仁宽及单仁重均存在广泛变异,表现出超亲遗传现象,且子仁性状频次均呈正态分布,具有数量性状特征,符合主基因+多基因遗传特点。仁长在2个F_2群体中均符合3对主基因控制的加性-上位性遗传模型,其遗传率分别为80.0%和76.8%;仁宽符合1对具有加性效应的主基因+多基因混合遗传模型或2对具有显性上位效应的主基因+多基因混合遗传模型,主基因遗传率分别为2.0%、15.6%;单仁重符合具有完全等加性效应的主基因遗传模型或3对具有加性-上位性效应主基因遗传模型,主基因遗传率分别为52.0%、92.6%。  相似文献   

8.
【目的】明确爆裂玉米膨爆性状的遗传方式,为爆裂玉米育种和分子标记辅助选择(MAS)提供理论依据。【方法】以爆裂玉米杂交组合吉爆902(吉812×吉704)的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代群体为材料,应用植物数量性状主基因+多基因混合遗传模型,对其膨爆性状进行多世代联合分析。【结果】爆裂玉米吉812×吉704组合的爆花率受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制遗传,该杂交组合的B1∶2、B2∶2和F2∶3群体爆花率的主基因遗传率分别为74.988 2%,78.345 1%和62.332 9%,多基因遗传率分别为3.118 9%,3.515 8%和6.115 6%。2对主基因中,加性效应为负值,显性效应为正值。第1对主基因的加性效应绝对值和显性效应值略大于或大于第2对主基因的相应效应值,2对主基因显性效应互作显著高于加性效应互作;第1对主基因加性×第2对主基因显性的互作效应值小于第2对主基因加性×第1对主基因显性的互作效应值。膨化倍数受1对加性主基因+加性-显性多基因控制,主基因遗传率较低,主基因加性效应d=-0.286 8。膨化体积受多基因控制,B1∶2、B2∶2和F2∶3家系世代多基因遗传率分别为10.49%,65.52%和28.99%,同时受环境影响较大。【结论】爆花率性状主基因遗传率较高,宜在早代对爆花率性状进行选择;膨化倍数性状主基因的遗传率较低,育种时应注重多基因的积累;膨化体积性状B2∶2家系世代多基因遗传率较高,同时受环境影响也较大,在育种时可以采用轮回选择及早代选择来提高育种效果。  相似文献   

9.
玉米产量相关性状的遗传分析与育种应用   总被引:1,自引:0,他引:1  
利用自主育成的3个玉米自交系S1、S3和S7组配的2个组合(S1×S3和S3×S7)的P1、P2、F1、B1、B2、F2等6个世代,运用六世代主基因+多基因模型联合分析方法,进行穗总重、穗长、穗粗、轴粗性状的遗传分析。结果表明,玉米穗总重性状在2个组合中均表现为以主基因遗传为主,2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传。穗长性状组合S1×S3表现为加性-显性-上位性多基因遗传;S3×S7组合表现为1对加性-显性主基因+加性-显性-上位性多基因混合遗传。穗粗性状组合S1×S3表现为1对加性-显性主基因+加性-显性-上位性多基因遗传;S3×S7组合表现为1对完全显性主基因+加性-显性多基因混合遗传。穗长、穗粗性状均表现为多基因遗传为主。轴粗性状组合S1×S3表现为2对加性-显性-上位性主基因+加性-显性多基因混合遗传,主基因遗传为主;S3×S7组合表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传,多基因遗传为主。研究结果显示轴粗、穗总重、穗粗多以加性遗传为主,有利等位基因聚合育种及早代选择较有效。而要选获非加性遗传为主控制的穗长性状的高表型个体,晚代选择才有效,且2性状的F1代由于超显性作用可出现高表型组合。  相似文献   

10.
绿豆主要株型性状的遗传   总被引:1,自引:1,他引:0  
为探索绿豆主要株型性状的遗传规律,进而为选育株型紧凑的直立型绿豆品种提供理论依据,以半蔓生型品种‘洮绿218’和直立型品种‘吉绿10号’为亲本配制杂交组合,采用主基因+多基因混合遗传模型分析方法对该组合6世代遗传群体(P_1、P_2、F_1、F_2、B_1和B_2)株高、分枝数、主茎节数和分枝夹角进行遗传分析。结果表明:株高、分枝数和分枝夹角均受2对加性-显性-上位性主基因+加性-显性多基因控制(E-1模型),其中,控制株高的2对主基因加性效应值均为7.27,显性效应分别为0.03和-0.13,主基因遗传率在B_1、B_2和F_2中分别为59.35%、8.23%和41.45%,多基因遗传率分别为2.40%、0%和0%;控制分枝数的2对主基因加性效应值均为0.33,显性效应分别为-0.74和-1.55,主基因遗传率在B_1、B_2和F_2中分别为3.26%、7.69%和53.10%,多基因遗传率分别为51.39%、56.36%和0%;控制分枝夹角的2对主基因加性效应值均为2.10,显性效应分别为-0.94和-1.38,主基因遗传率在B_1、B_2和F_2中分别为48.11%、32.45%和64.54%,多基因遗传率均为0%。主茎节数的最适宜模型为D-0模型(1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型),主基因加性效应值和显性效应值分别为0.10和-0.01,主基因遗传率在B_1、B_2和F_2中分别为1.39%、1.27%和0.63%,多基因遗传率分别为65.39%、10.81%和47.08%。综合表明,‘洮绿218’ב吉绿10号’组合的分枝数和分枝夹角的总遗传率较大,应在早世代进行选择;株高和分枝夹角主要受主基因控制,分枝数和主茎节数大部分世代主要受多基因控制;在绿豆株型育种中要综合考虑主基因、多基因和环境因素的影响。  相似文献   

11.
利用主基因+多基因混合遗传模型多世代联合分析方法,对万寿菊W217×W203组合的P1、P2、F1、B1、B2和F2共6个世代的叶黄素含量进行遗传分析。结果表明,色素万寿菊叶黄素含量性状最优遗传模型为两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因遗传效应为主,多基因效应为辅。主基因加性效应、显性效应和上位性效应作用很大,在B1群体中主基因遗传率为78.47%,B2群体中主基因遗传率为86.86%、多基因遗传率11.77%,F2群体中主基因遗传率为60.82%、多基因遗传率38.42%。可见,色素万寿菊叶黄素含量性状遗传变异中主基因作用大于多基因作用。  相似文献   

12.
为明确中国南瓜第1雌花节位的遗传规律,选用中国南瓜杂交组合89-1×93-5的P1、P2、F1、F2、BCP1、BCP2的6个世代为研究对象,应用植物数量性状的主基因+多基因遗传模型研究其遗传规律。结果表明,该群体第1雌花节位的遗传符合2对加性-显性-上位性主基因+加性。显性多基因混合遗传模型。2对主基因的加性效应均为0.068 4,均使第1雌花节位升高;显性效应分别为-4.826 5和-0.905 8。多基因的加性效应和显性效应分别3.008 5和-1.566 8。其主基因遗传率在BCP1、BCP2、F2分别为74.34%、68.17%、89.84%,多基因遗传率在BCP1、BCP2、F2均为0;说明主基因表现出较高的遗传力,可以在早期世代对第1雌花节位进行选择。  相似文献   

13.
鸡开产日龄和开产体质量的主基因+多基因混合遗传分析   总被引:1,自引:0,他引:1  
为研究鸡开产性状的分子遗传机理,揭示其内在遗传规律,以绿壳蛋鸡黑羽纯系和白来航鸡为亲本构建资源群体,测定亲本P1、P2和F1、F2代的开产日龄和开产体质量,运用数量性状主基因+多基因混合遗传模型软件SEA-G4F2对开产日龄和开产体质量进行遗传分析。结果表明:开产日龄的遗传模型为模型E,即两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型,主基因遗传率为25.06%;开产体质量的适合模型为模型E-1,即2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型,其主基因遗传力达到了63.28%,两个性状的多基因遗传率均很小,主基因对两个性状的调控作用远远大于多基因。  相似文献   

14.
为了揭示小麦籽粒多酚氧化酶活性的遗传特点,应用植物数量性状主基因+多基因混合遗传模型对杂交组合IDO580×宁麦13号、鄂恩1号×IDO580的两套P1、F1、P2、B1、B2和F2的6个世代群体的籽粒多酚氧化酶活性进行了多世代联合分析。结果表明:两组合籽粒多酚氧化酶活性均受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E-0)混合遗传的控制;在两对主基因的一阶遗传参数中,加性效应大于显性效应,但以上位性效应所占比例为最大;在二阶遗传参数中,主基因遗传率远大于多基因遗传率,以主基因遗传为主。在B1、B2和F2的3个分离世代中,以F2世代的主基因遗传率为最高,其在这两个组合中的主基因遗传率分别为80.49%和82.24%。  相似文献   

15.
棉花株型性状的遗传分析   总被引:5,自引:0,他引:5  
探讨棉花株型性状的遗传规律,为通过株型育种提高棉花产量提供理论依据,该研究应用主基因+多基因混合遗传模型和分析方法,对以短季棉品种百棉2号和中晚熟材料TM-1形成的P1、P2、F1、B1、B2、F2 6个群体,进行了棉花株型性状的遗传研究.结果显示:总果枝数、株高/果枝长度和主茎节间长度受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制(E-0);有效果枝数受2对加性-显性-上位性主基因控制(B-1);株高受1对加性-显性主基因+加性-显性-上位性多基因控制(D-0);果枝长度受1对加性主基因+加性-显性多基因控制(D-2);果枝节间长度受加性-显性-上位性多基因控制(C-0);总果节数受2对加性主基因+加性-显性多基因控制(E-3);果枝夹角受1对完全显性主基因+加性-显性多基因控制(D-3).总果枝数、株高、主茎节间长度和总果节数以主基因遗传为主;果枝夹角以多基因遗传为主;有效果枝数属于典型的主基因遗传;果枝节间长度属于典型的多基因遗传;果枝长度、株高/果枝长度以主基因和多基因遗传并重.表明:对以主基因遗传或以主基因遗传为主的性状可采用单交重组或简单回交转育的方法;对以多基因遗传或以多基因遗传为主的性状可采用聚合回交或轮回选择累积增效基因的方法;对以主基因和多基因遗传并重的性状要根据其主基因和多基因的相对效应大小分别考虑,最终达到主基因、多基因同时得到改良的育种效果.  相似文献   

16.
爆裂玉米叶片叶绿素含量的混合遗传分析   总被引:3,自引:0,他引:3  
应用植物数量性状主基因+多基因混合遗传模型,以爆裂玉米杂交组合吉爆902(吉812×吉704)的P_1、F_1、P_2、B_(1:2)、B_(2:2)和F_(2:3)6个家系世代群体为材料,对爆裂玉米叶片叶绿素含量进行多世代联合分析。结果表明:叶绿素含量受1对加性-显性主基因+加性-显性-上位性多基因控制遗传。主基因加性效应为d=-0.0247,主基因显性效应值为h=0.0511。主基因存在显性效应,该组合的叶绿素含量存在杂种优势。B_(2:2)和F_(2:3)家系群体主基因遗传力分别为55.28%和42.12%,多基因遗传率分别为26.36%和34.11%。  相似文献   

17.
黄瓜把长主基因+多基因混合遗传分析   总被引:2,自引:0,他引:2  
马娟  司龙亭  田友 《西北农业学报》2010,19(10):161-165
以2个性状稳定的华北型黄瓜自交系为亲本,建立了6个世代联合群体(P1、P2、F1、B1、B2、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的把长进行多世代联合分析。结果表明,把长遗传受2对加性-显性-上位性主基因+加性-显性多基因(E-1模型)控制,2对主基因的加性效应和显性效应均为负向效应,且存在一定的互作效应。在分离世代中,主基因的遗传率均比多基因的遗传率高,环境方差对表型方差的影响占有一定比重,即环境对把长的遗传影响较大,对于这个性状适于高代选择。  相似文献   

18.
不结球白菜株高性状主基因+多基因遗传分析   总被引:7,自引:0,他引:7  
应用主基因 多基因6个世代联合分离分析方法对不结球白菜SI×秋017组合的株高性状进行了分析.结果表明,SI×秋017组合的株高性状遗传受1对负向完全显性主基因 加性-显性多基因控制,主基因加性效应为5.79;多基因加性效应为-7.85,多基因显性效应为14.95;B1、B2和F2世代株高的主基因遗传率分别为33.28%、37.05%和51.68%;多基因遗传率分别为5.84%、12.67%和1.34%,说明F2世代株高表现出较高的主基因遗传率,并受环境影响.对SI×秋017组合株高性状的改良要以主基因为主,同时注意环境的影响.  相似文献   

19.
普通丝瓜果实性状的遗传分析   总被引:8,自引:1,他引:7  
应用植物数量性状主基因+多基因混合遗传模型对普通丝瓜品种50-5(黑籽短圆筒)×20-4(桂林水瓜)杂交组合6个世代群体的5个果实性状(果柄长、果长、果径、果形指数和单果质量)进行了联合分析,结果表明:50-5 ×20-4组合果柄长的遗传符合2对加性-显性-上位性主基因+加性-显性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.49%、70.53%和82.07%,环境方差占总表型方差的比例分别是31.50%、29.47%和17.92%;果长遗传符合2对加性+显性+上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.85%、84.55%和81.68%,环境方差占总表型方差的比例分别是31.15%、15.44%和18.32%;果径遗传符合2对加性-显性-上位陛主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,73.06%和73.82%.环境方差占总表型方差的比例分别是34.62%、26.94%和26.13%;果形指数遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,62.80%和78.89%,环境方差占总表型方筹的比例分别足34.76%,37.19%和21.11%;单果质量遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基凶遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为70.71%、85.35%和89.64%,环境方差占与总表型方差的比例分别是29.29%、14.64%和10.36%.果柄长性状的主基因遗传率较小,宜采用个体选择法(基因型选择法),宜在分离晚世代进行选择;果长、果径、果形指数和单果质量性状的主基因遗传率较大,宜采取混合选择法(表型选择法),可在分离早世代进行选择;且宜对5个果实性状进行综合选择.5个果实性状的环境方差占总表型方差的比例均较高,故在育种过程中要尽量采取措施以减少环境影响.  相似文献   

20.
番茄可溶性固形物含量的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
番茄可溶性固形物对番茄品质有着重要的影响,其含量的高低直接影响番茄的甜度、酸度和风味,因此培育高可溶性固形物含量的番茄是育种家重要的育种目标之一。本研究利用含有高可溶性固形物基因的材料TA1218和LA1563,采取植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,探讨TA1218×TMFbg-1-0-0(组合I)和LA1563×TMFbg-1-0-0(组合II)的P1、P2、F1和F23个世代番茄可溶性固形物性状的遗传。结果表明:可溶性固形物的遗传在组合I中受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,在组合II中受两对加性-显性-上位性主基因+加性-显性多基因控制;2个组合中的的两对主基因均存在加性负效应,组合Ⅰ中两对主基因均具有显性负效应,而组合Ⅱ中2对主基因的显性效应均为正值;2对主基因间存在明显的基因互作效应;2个组合中F2群体的主基因的遗传率分别为86.540%、85.596%,均明显大于多基因遗传率4.418 9%、7.895 2%。可见可溶性固形物性状主要以主基因遗传为主,可以在早期世代进行选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号