首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于迁移学习和Mask R-CNN的稻飞虱图像分类方法   总被引:4,自引:0,他引:4  
针对当前稻飞虱图像识别研究中自动化程度较低、识别精度不高的问题,提出了一种基于迁移学习和Mask R-CNN的稻飞虱图像分类方法。首先,根据稻飞虱的生物特性,采用本团队自主研发的野外昆虫图像采集装置,自动获取稻田稻飞虱及其他昆虫图像;采用VIA为数据集制作标签,将数据集分为稻飞虱和非稻飞虱两类,并通过迁移学习在Res Net50框架上训练数据;最后,基于Mask R-CNN分别对稻飞虱、非稻飞虱、存在干扰以及存在黏连和重合的昆虫图像进行分类实验,并与传统图像分类算法(SVM、BP神经网络)和Faster R-CNN算法进行对比。实验结果表明,在相同样本条件下,基于迁移学习和Mask R-CNN的稻飞虱图像分类算法能够快速、有效识别稻飞虱与非稻飞虱,平均识别精度达到0. 923,本研究可为稻飞虱的防治预警提供信息支持。  相似文献   

2.
为实现茶叶病害精准分类,针对茶叶病害图像分类中小样本问题及类别分布不均的问题,提出了一种基于迁移学习的SimAM-ConvNeXt-FL模型的病害图像分类方法。首先在ConvNeXt模型中加入SimAM模块,以加强复杂特征的提取。其次针对样本分布不均问题,将Focal Loss函数作为训练过程中的损失函数,通过增加数量较少样本的权重来减小样本分布不均的影响。最后使用SimAM-ConvNeXt-FL模型对Plant Village数据集训练,将训练得到的参数迁移到实测的茶叶病害图像上并进行微调,减少过拟合带来的影响,设置消融实验证明模型改进的有效性,并与不同分类模型(AlexNet、VGG16、ResNet34模型)分别进行对比实验。实验结果表明,SimAM-ConvNeXt-FL模型识别效果最佳,准确率达96.48%, SimAM-ConvNeXt-FL模型较原ConvNeXt模型在茶煤病、茶藻斑病、茶炭疽病、健康叶片和茶白星病的F1值分别提高4.46、3.76、0.43、0.22、5.23个百分点。结果表明本文提出的模型具有较高的分类准确率与较强的泛化性,可推进茶叶病害分类工作发展...  相似文献   

3.
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。  相似文献   

4.
互联网是一个巨大的资源库,也是一个丰富的知识库。针对农作物小样本引起的过拟合问题,本研究引入了知识迁移和深度学习的方法,采用互联网公开的ImageNet图像大数据集和PlantVillage植物病害公共数据集,以实验室的黄瓜和水稻病害数据集AES-IMAGE为对象开展相关的研究与试验。首先将批归一化算法应用于卷积神经网络CNN中的AlexNet和VGG模型,改善网络的过拟合问题;再利用PlantVillage植物病害数据集得到预训练模型,在改进的网络模型AlexNet和VGG模型上用AES-IMAGE对预训练模型参数调整后进行病害识别。最后,使用瓶颈层特征提取的迁移学习方法,利用ImageNet大数据集训练出的网络参数,将Inception-v3和Mobilenet模型作为特征提取器,进行黄瓜和水稻病害特征提取。本研究结合试验结果探讨了适用于农作物病害识别问题的最佳网络和对应的迁移策略,表明使用VGG网络参数微调的策略可获得的最高准确率为98.33%,使用Mobilenet瓶颈层特征提取的策略可获得96.8%的验证准确率。证明CNN结合迁移学习可以利用充分网络资源来克服大样本难以获取的问题,提高农作物病害识别效率。  相似文献   

5.
基于迁移学习的温室番茄叶片水分胁迫诊断方法   总被引:3,自引:0,他引:3  
赵奇慧  李莉  张淼  蓝天  SIGRIMIS N A 《农业机械学报》2020,51(S1):340-347,356
为实时诊断番茄叶片水分胁迫程度,提出一种叶片水分胁迫程度的诊断方法,该诊断方法包括2部分:叶片分割和水分胁迫程度分类。采用以ResNet101为特征提取卷积网络的Mask R-CNN网络对背景遮挡的番茄叶片进行实例分割,通过迁移学习将Mask R-CNN在COCO数据集上预训练得到的权重用于番茄叶片的实例分割,保留原卷积网络的训练参数,只调整全连接层。利用卷积网络提取的特征,可将番茄叶片分割视为区分叶片与背景的一个二分类问题,以此来分割受到不同水分胁迫的番茄叶片图像。利用微调后的DenseNet169图像分类模型进行叶片水分胁迫程度分类,通过迁移学习将DenseNet169在ImageNet数据集上预训练得到的权重用于番茄叶片水分胁迫程度的分类,保持DenseNet169卷积层的参数不变,只训练全连接层,并对原DenseNet169全连接层进行了修改,将分类数量从1.000修改为3。试验共采集特征明显的无水分胁迫、中度胁迫和重度胁迫3类温室番茄叶片图像,共2000幅图像,建立数据集,并进行模型训练与测试。试验结果表明,训练后的Mask R-CNN叶片实例分割模型在测试集上对于单叶片和多叶片的马修斯相关系数平均为0.798,分割准确度平均可达到94.37%。经过DenseNet169网络训练的叶片水分胁迫程度分类模型在测试集上的分类准确率为94.68%,与 VGG-19、AlexNet这2种常用的深度学习分类模型进行对比,分类准确率分别提高了5.59、14.68个百分点,表明本文方法对温室番茄叶片水分胁迫程度实时诊断有较好的效果,可为构建智能化的水胁迫分析技术提供参考。  相似文献   

6.
使用卷积神经网络对作物病害图片进行识别分类需要较长模型训练时间,采用迁移学习的方法可有效提高识别效率。首先探究迁移学习冻结全部网络层、冻结部分网络层和不冻结网络层时的识别效果,然后使用InceptionV3模型和Xception模型分别对玉米健康叶片、尾孢叶斑病、纹枯病以及锈病进行识别与分类。试验结果表明:迁移学习不冻结网络层时分类效果最好,准确率可达97.42%;冻结部分网络层次之,InceptionV3模型在可训练参数量为70%左右时识别效果较好,准确率可达92.04%;Xception模型在可训练参数量为80%时效果最好,准确率可达94.62%;冻结全部网络层时准确率相对较低,准确率为87.10%。整体来看,Xception模型比InceptionV3模型更适用于玉米叶片病害的识别。  相似文献   

7.
基于树木整体图像和集成迁移学习的树种识别   总被引:2,自引:0,他引:2  
为解决自然场景中拥有复杂背景的树木整体图像识别问题,提出了一种基于树木整体图像和集成迁移学习的树种识别方法。首先使用Alex Net、Vgg Net-16、Inception-V3及ResNet-50这4种在Image Net大规模数据集上预训练的模型对图像进行特征提取,然后迁移到目标树种数据集上,训练出4个不同的分类模型,最后通过相对多数投票法和加权平均法建立集成模型。构建了一个新的树种图像数据集——Trees Net,基于该数据集,设计了多类实验,并将该方法与传统的图像识别方法进行了分析比较。实验结果表明:该方法对复杂背景下树种图像识别准确率达到99. 15%,对于树木整体图像识别具有较好的效果。  相似文献   

8.
程忠  黄明辉 《南方农机》2023,(16):81-83
【目的】针对遥感图像分类任务,为使模型精确捕获高层语义信息的同时降低计算复杂度,解决遥感图像分类任务中类内差异大而类间差异小的问题,提出了基于Mobile Vi T轻量化网络的遥感图像分类方法。【方法】基于Transformer框架,通过在卷积神经网络中引入注意力机制来实现对图像特征的提取和编码。在训练阶段,Mobile Vi T使用类似于传统Transformer模型的自监督学习方法,即通过无监督的方式学习图像特征的表示。通过使用一种名为Contrastive Multiview Coding(CMC)的学习策略,该策略可以通过最大化不同视角下的图像相似性来学习图像特征。在训练过程中,Mobile Vi T使用随机数据增强技术和Dropout等方法来增加模型的泛化能力,同时应用权重衰减和梯度剪裁等技术来避免过拟合和爆炸梯度问题。在推理阶段,Mobile Vi T将输入的图像沿着通道轴划分成多个块,并将每个块作为一个序列输入到Transformer网络中。在Transformer网络中,Mobile Vi T采用多头自注意力机制和全连接层,将每个块的特征编码成一个固定长度的向量。然后,...  相似文献   

9.
基于迁移学习的卷积神经网络植物叶片图像识别方法   总被引:10,自引:0,他引:10  
郑一力  张露 《农业机械学报》2018,49(S1):354-359
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(AlexNet、InceptionV3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后将本文方法与支持向量机(SVM)方法、深度信念网络(DBN)方法、卷积神经网络(CNN)方法在ICL数据库进行对比实验。实验使用Tensorflow训练网络模型,实验结果由TensorBoard可视化得到的数据绘制而成。结果表明,利用AlexNet、InceptionV3预训练模型得到的测试集准确率分别为95.31%、95.40%,有效提高了识别准确率。  相似文献   

10.
林相泽  徐啸  彭吉祥 《农业机械学报》2022,53(9):270-276,294
为了实现对不同稻飞虱的快速准确识别,同时防止同一姿态下的同一只昆虫被重复计数,提出一种将图像消冗与CenterNet网络相结合的识别分类方法。首先利用自主设计的田间昆虫采集装置,自动获取昆虫图像并制作数据集。其次,将CenterNet算法与图像消冗算法相结合,选用深层特征融合网络(Deep layer aggregation, DLA)作为主干网络来提取昆虫的特征,并进行识别分类。将本文方法与经典机器学习和深度学习模型进行对比,实验结果表明,对于田间昆虫采集装置获取到的相似度较高的活体图像,本文方法不仅能够快速处理昆虫图像,而且能够成功解决昆虫重复检测的问题,平均精度均值为88.1%,检测速率为42.9f/s,无论是精度还是处理速度本文方法都具有较明显优势。该研究有效地完成了对3种主要稻飞虱的识别分类,对不同时间段采集到的昆虫表现出良好的泛化能力,可用于后期水稻害虫暴发的智能预警和测报。  相似文献   

11.
基于迁移学习的农作物病虫害检测方法研究与应用   总被引:3,自引:0,他引:3  
为了提高农作物病虫害严重程度(健康、一般、严重)的分类效果,采用迁移学习方式并结合深度学习提出了一种基于残差网络(ResNet 50)的CDCNNv2算法。通过对10类作物的3万多幅病虫害图像进行训练,获得了病虫害严重程度分类模型,其识别准确率可达91.51%。为了验证CDCNNv2模型的鲁棒性,分别与使用迁移学习的ResNet 50、Xception、VGG16、VGG19、DenseNet 121模型进行对比试验,结果表明,CDCNNv2模型比其他模型的平均精度提升了2.78~10.93个百分点,具有更高的分类精度,病虫害严重程度识别的鲁棒性增强。基于该算法所训练的模型,结合Android技术开发了一款实时在线农作物病虫害等级识别APP,通过拍摄农作物叶片病虫害区域图像,能够在0.1~0.5s之内获取识别结果(物种-病害种类-严重程度)及防治建议。  相似文献   

12.
为解决样本的手工获取和常规的目视解译难以适应目前农业土地资源信息自动化提取的需求问题,引入时空数据挖掘技术,运用关联知识迁移学习机制,提出了一种基于知识迁移学习的高分辨遥感影像土地利用信息分类制图方法(KTLC)。首先,运用改进的均值漂移算法对新的待分类制图影像进行分割获得影像对象,然后,将分割后对象的矢量边界与前时相土地利用矢量专题图进行配准、嵌套,通过叠加分析获取当前影像中的不变对象,并通过光谱、空间信息阈值筛选完成不变对象的提纯,进而将历史专题图中的地物类别知识迁移到新影像对象上,建立新的特征与地物类别映射关系,最后,运用决策树构建分类规则完成当前影像的快速分类制图,并将所提方法与利用易康(e Cognition)软件进行分类(EC)的结果进行对比。研究结果表明,对于2组实验影像,KTLC方法分类总体精度分别为88.61%、88.30%,EC方法分类的总体精度分别为89.87%、84.84%,2种方法分类制图精度相当,但在效率方面,KTLC方法优于EC方法。  相似文献   

13.
基于迁移学习的无人机影像耕地信息提取方法   总被引:7,自引:0,他引:7  
随着精准农业技术的发展,对农作物用地信息快速、准确提取的需求越来越高。同时,无人机技术以其方便、高效、具有低空云下飞行能力等优势被广泛应用于自然资源的调查中。但无人机影像普遍光谱信息较为匮乏,因此很难准确、快速地提取出耕地信息。基于此,提出了一种利用迁移学习机制的耕地提取方法(TLCLE)。首先,利用深度卷积神经网络(DCNN)剔除线状地物(道路、田埂等),然后,通过引入迁移学习机制将DCNN特征训练过程中得到的特征提取方法迁移到耕地提取中,最后,将所提方法与利用易康(e Cognition)软件进行耕地提取(ECLE)结果进行对比。研究结果表明:对于实验影像1、2,TLCLE方法耕地提取总体精度分别为91.9%、88.1%,ECLE方法总体精度分别为90.3%、88.3%,2种方法提取精度相当,在保证耕地地块完整、连续性上TLCLE方法优于ECLE方法。  相似文献   

14.
为实现苹果树叶片病虫害快速且准确地识别与分类,研究基于迁移学习的多种神经网络模型,对比不同模型在苹果树叶片病虫害识别上的准确度。构建VGG16,ResNet50,Inception V3三种神经网络模型,利用从PlantVillage上获取的4种不同的苹果树叶片图片,分别为苹果黑星病叶片,苹果黑腐病叶片,苹果锈病叶片以及健康苹果叶片。按照8∶1∶1的比例将图片分为训练集,测试集和验证集对模型进行训练。在相同的试验条件下对比分析VGG16,ResNet50和Inception V3的试验结果。三种模型在使用迁移学习技术的情况下对苹果树叶片病虫害识别准确率分别达到97.67%,95.34%和100%。与不使用迁移学习的模型相比,使用迁移学习能够明显提升模型的收敛速度以及准确率,为常见的苹果树病虫害识别提供了新的方法。  相似文献   

15.
围绕水产养殖水下目标精准识别的产业发展需求,针对小样本目标识别精度低、模型算法场景适应能力差等问题,提出一种基于改进循环对抗网络(Cycle constraint adversarial network, CycleGAN)样本扩增和注意力增强迁移学习的小样本养殖鱼类识别方法。利用水下采样装备收集实际养殖场景和可控养殖场景大黄鱼图像,并以可控场景图像作为辅助样本集。利用CycleGAN为基础框架实现辅助样本到实际养殖场景图像的迁移,并提出一种基于最大平均差异(Maximum mean discrepancy, MMD)的迁移模型损失函数优化方法。在迁移学习阶段使用ResNet50为基础框架,并引入SK-Net(Selective kernel network)注意力机制优化模型对不同感受野目标的感知能力,提升模型对无约束鱼类目标的识别精度。试验结果表明,本文方法有效提升了小样本鱼类目标的识别能力,鱼类识别召回率达到94.33%,平均精度均值达到96.67%,为鱼类行为跟踪和表型测量提供了有效的技术支撑。  相似文献   

16.
基于分步迁移策略的苹果采摘机械臂轨迹规划方法   总被引:2,自引:0,他引:2  
针对非结构化自然环境使基于深度强化学习的采摘轨迹规划训练效率低的问题,提出了基于分步迁移策略的深度确定性策略梯度算法(DDPG),并进行了苹果采摘轨迹规划。首先,提出了基于DDPG的渐进空间约束分步训练策略;其次,利用迁移学习思想,将轨迹规划的最优策略由无障碍场景迁移到单一障碍场景、由单一障碍场景迁移到混杂障碍场景;最后,对多自由度苹果采摘机械臂进行了采摘轨迹规划仿真实验,结果表明,分步迁移策略能够提高DDPG算法的训练效率与网络性能,仿真实验验证了本文方法的有效性。  相似文献   

17.
基于字典学习与SSD的不完整昆虫图像稻飞虱识别分类   总被引:1,自引:0,他引:1  
为了解决图像采集过程中由于昆虫图像获取不完整而导致整体稻飞虱识别精度低、速度慢的问题,提出了一种基于字典学习和SSD的不完整稻飞虱图像分类方法。首先,使用自主研发的野外昆虫图像采集装置采集稻飞虱图像,构建小型图像集。然后,将采集的稻田昆虫图像进行阈值分割,得到单一稻田昆虫图像;对单一昆虫图像进行分块处理,得到带有背景信息和特征信息的混合子图像块集;使用子图像块作为字典原子来构建过完备字典,并对其进行初始化和优化更新;将更新后的过完备字典作为训练集输入SSD算法中进行训练,得到训练模型。最后,将采集的包含不完整稻田昆虫的图像在训练集模型上进行测试,并将测试结果与BPNN(Back propagation neural network)、SVM (Support vector machines)、稀疏表示等方法进行对比。试验结果表明,所提出的基于字典学习和SSD的稻飞虱识别与分类方法可以对不完整的昆虫图像进行准确快速的识别分类,其中,分类速度可达22f/s,识别精度可达89.3%,对稻飞虱的监督、预警和防治提供了有效的信息与技术支持。  相似文献   

18.
基于迁移学习的卷积神经网络玉米病害图像识别   总被引:17,自引:0,他引:17  
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在Image Net图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95. 33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。  相似文献   

19.
在有限标记样本下,为了有效协同空谱信息提高高光谱图像的分类性能,提出了一种基于自适应字典的小样本高光谱图像分类方法.首先,对高光谱图像进行熵率超像素分割,分析标记样本的超像素区域和光谱近邻,将鉴别力高的样本扩展至标记样本集;然后,在扩展的标记样本集上分析测试样本的空谱信息,对不同的测试样本精简标记样本集,形成自适应字典...  相似文献   

20.
针对玉米病害图像采集困难,特别是灰斑病表现差异性较多问题,提出一种基于循环一致对抗网络(CycleGAN)的玉米灰斑病图像生成算法,通过病害图像迁移,使得健康的作物图像可以生成患病作物图像。此方法首先通过特征提取分别提取出健康玉米图像特征和灰斑病图像特征;然后把两种特征图像输入到CycleGAN的生成器Gs中,结合生成器中的残差网络提高图像传输时的准确性,利用两个判断器判断生成的图像是否一致;最后通过对健康玉米图像进行病害迁移得到所需的玉米灰斑病图像。试验结果表明:与VAE、GAN的图像进行迁移比较,结构相似SSIM值整体分别提升50.434%、18.762%,均方误差MSE值整体减少12.891%、9.558%;直观效果上CycleGAN迁移后的不同病害程度的玉米灰斑病效果更好,因此使用CycleGAN网络生成的玉米灰斑病图像更准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号