首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The spatial variability in mineralization of atrazine, isoproturon and metamitron in soil and subsoil samples taken from a 135-ha catchment in north France was studied. Fifty-one samples from the top layer were taken to represent exhaustively the 31 agricultural fields and 21 soil types of the catchment. Sixteen additional samples were collected between depths of 0.7 and 10 m to represent the major geological materials encountered in the vadose zone of the catchment. All these samples were incubated with 14C-labelled atrazine under laboratory conditions at 28 degrees C. Fourteen selected surface samples which exhibited distinctly different behaviour for atrazine dissipation (including sorption and mineralization) were incubated with 14C-isoproturon and 14C-metamitron. Overall soil microbial activity and specific herbicide degradation activities were monitored during the incubations through measurements of total carbon dioxide and 14C-carbon dioxide respectively. At the end of the incubations, extractable and non-extractable (bound) residues remaining in soils were measured. Variability of herbicide dissipation half-life in soil surface samples was lower for atrazine and metamitron (CV < 12%) than for isoproturon (CV = 46%). The main contributor to the isoproturon dissipation variability was the variability of the extractable residues. For the other herbicides, spatial variability was mainly related to the variability of their mineralization. In all cases, herbicide mineralization half-lives showed higher variability than those of dissipation. Sorption or physicochemical soil properties could not explain atrazine and isoproturon degradation, whose main factors were probably directly related to the dynamics of the specific microbial degradation activity. In contrast, variability of metamitron degradation was significantly correlated to sorption coefficient (K(d)) through correlation with the sorptive soil components, organic matter and clay. Herbicide degradation decreased with depth as did the overall microbial activity. Atrazine mineralization activity was found down to a depth of 2.5 m; beyond that, it was negligible.  相似文献   

2.
Atrazine behaviour was investigated in the different pedological horizons from profiles of two non-tilled soils, a Typic Argiustoll and an Entic Haplustoll from the Argentinean pampas. As atrazine use in field conditions was associated with maize cropping, only one type of soil received atrazine every other year. Atrazine behaviour was characterized through the balance of 14C-U-ring atrazine radioactivity among the mineralized fraction, the extractable fraction and the non-extractable bound residues. The composition of the extractable fraction was characterized. Atrazine mineralization was the main dissipation mechanism in the superficial horizon of the Argiustoll because of microbial adaptation after repeated atrazine applications. In contrast, little atrazine mineralization was found in the Haplustoll profile, and it decreased with depth. The capacity of the soil organic matter to form bound residues was characterized using soil-size fractionation. Atrazine-bound residues depended on the soil organic matter content and the size of the fraction. Organic matter in the largest size fractions had a higher capacity to form atrazine-bound residues. In the Argiustoll profile, the atrazine degradation capacity decreased in the subsurface horizons (Bt1 and Bt2), where a large part of bound residues were formed. The deepest horizon (BC) of this profile had a high capacity to degrade atrazine reaching this horizon after a lag period. In the Haplustoll profile, atrazine mineralization and bound residue formation followed the organic carbon mineralization pattern.  相似文献   

3.
The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.  相似文献   

4.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

5.
Background: Repeated applications may have a greater impact on the soil microbial community than a single application of glyphosate. Experiments were conducted to study the effect of one, two, three, four or five applications of glyphosate on soil microbial community composition and glyphosate mineralization and distribution of 14C residues in soil. RESULTS: Fatty acid methyl esters (FAMEs) common to gram‐negative bacteria were present in higher concentrations following five applications relative to one, two, three or four applications both 7 and 14 days after application (DAA). Additionally, sequencing of 16S rRNA bacterial genes indicated that the abundance of the gram‐negative Burkholderia spp. was increased following the application of glyphosate. The cumulative percentage 14C mineralized 14 DAA was reduced when glyphosate was applied 4 or 5 times relative to the amount of 14C mineralized following one, two or three applications. Incorporation of 14C residues into soil microbial biomass was greater following five glyphosate applications than following the first application 3 and 7 DAA. CONCLUSION: These studies suggest that the changes in the dissipation or distribution of glyphosate following repeated applications of glyphosate may be related to shifts in the soil microbial community composition. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Sorption, mineralization and mobility of glyphosate were studied in six substrates: the five types of gravel most frequently used as surfacing in Denmark and a sandy agricultural soil from Simmelkaer that served as a reference soil. Cumulative mineralization of [methyl-14C]glyphosate in batch studies was highest in coarse gravel, amounting to 14% after 4 days at 30 degrees C and 32% after 31 days. Mineralization was slowest in the sandy reference soil, amounting to only 2% after 31 days. The adsorption coefficient (Kd) of glyphosate in gravel ranged from 62 to 164 litre kg(-1), while that in the sandy reference soil was 410 litre kg(-1). The results indicate that the relatively low Kd in gravel allows a relatively high rate of glyphosate mineralization by the biomass. When Kd is high, in contrast, mineralization is slow. Lowering the temperature to 10 degrees C decreased mineralization by 50% in one of two gravels. The leaching of glyphosate was screened in simple columns of gravel or soil in which precipitation events (20 mm over a 2-h period) were simulated on three occasions, starting either immediately after or 2 days after application of glyphosate. [14C]Glyphosate was applied as a tracer mixed with the commercial product Roundup Garden at the recommended rate of 2.4 kg glyphosate ha(-1), equivalent to 1 microg g(-1) soil. The highest concentration of [14C] compounds (expressed in terms of glyphosate concentration) in leachate from the columns exceeded 1300 microg litre(-1), and was detected in rounded gravel after the first rain event. No glyphosate was detected in leachate from the sandy reference soil.  相似文献   

7.
Degradation if isoproturon and availability of residues in soil The availability and degradation of 14C-ring-labelled isoproturon in soil was investigated over 140 days under controlled laboratory conditions. Degradation of the active ingredient followed and 65 days later only a minor fraction (0.6%) of the parent molecule remained extractable. A demethylated-isoproturon metabolite was detectable in soil from day 15 (2.6%). The amount of 14CO2 derived from the 14C benzene ring label and liberated over time indicated that a total of 13.6% isoproturon was mineralized during the incubation period. In parallel, the amount of 14C residue extracted from the soil by water followed by methanol or remaining within the soil—analysed by combustion—was also determined at intervals. After 140 days, 72% of the radiolabel added remained in the soil as non-extractable residue. The degradation half-life of extractable isoproturon was an estimated 14 days.  相似文献   

8.
Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (<7 days) changes in the soil microbial community. After incubation for 42 days, 32-37% of the applied glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.  相似文献   

9.
The biomineralization of [14C]glyphosate, both in the free state and as 14C-residues associated with soybean cell-wall material, was studied in soil samples from four different agricultural farming systems. After 26 days, [14C]carbon dioxide production from free glyphosate accounted for 34–51% of the applied radiocarbon, and 45–55% was recovered from plant-associated residues. For three soils, the cumulative [14C]carbon dioxide production from free glyphosate was positively correlated with soil microbial biomass, determined by substrate-induced heat output measurement and by total adenylate content. The fourth soil, originating from a former hop plantation, and containing high concentrations of copper from long-term fungicide applications, did not fit this correlation but showed a significantly higher [14C]carbon dioxide production per unit of microbial biomass. Although the cumulative [14C]carbon dioxide production from plant-associated 14C-residues after 26 days was as high as from the free compound, it was not correlated with the soil microbial biomass. This indicates that the biodegradation of plant-associated herbicide residues, in contrast to that of the free compound, involves different degradation processes. These encompass either additional steps to degrade the plant matrix, presumably performed by different soil organisms, or fewer degradation steps since the plant-associated herbicide residues are likely to consist mainly of easily degradable metabolites. Moreover, the bioavailability of plant-associated pesticide residues seems to be dominated by the type and strength of their fixation in the plant matrix. ©1997 SCI  相似文献   

10.
BACKGROUND: The 2,4‐D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4‐D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4‐D were able rapidly to mineralise this herbicide. The half‐life of 2,4‐D ranged from 8 to 30 days, and maximum mineralisation of 14C‐2,4‐D ranged from 57 to 71%. Extractable 14C‐2,4‐D and 14C‐bound residues accounted for less than 1 and 15% respectively of the 14C‐2,4‐D initially added. The highest amounts of 14C‐2,4‐D bound residues were recorded in the soil with the lowest 2,4‐D‐mineralising ability. Although all three soils were able to mineralise 2,4‐D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4‐D‐mineralising ability. 2,4‐D‐mineralising ability was positively correlated with soil moisture content. Negligible 2,4‐D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4‐D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
A study was conducted to relate the occurrence of accelerated pesticide biodegradation to the susceptibility of the pesticides to growth-linked degradation or cometabolism. The mineralization of 2,4-D was initially slow but then became rapid, and a second application was mineralized with no acclimation phase and more rapidly than the first. The numbers of 2,4-D-degrading micro-organisms increased markedly following its first application and then declined, but the population size increased after a second addition. Glyphosate was rapidly and extensively mineralized following the first and second applications to soil, and the abundance of organisms able to degrade it rose after the first addition and remained high before and following the second application. Propham (IPC) mineralization was detected only 15 days after its application but the degradation was rapid thereafter, and the second addition was rapidly and extensively mineralized with no acclimation phase. The population of propham-degrading micro-organisms was initially small, but increased markedy 10 days after the initial herbicide addition and was still large at the time of the second application. The rate of carbofuran biodegradation in the test soil was the same following the first and second applications, and the abundance of carbofuran-metabolizing microorganisms did not change appreciably as a result of soil treatment with the insecticide. Simazine mineralization was slow, although the rate was higher following the second addition; however, the number of simazine-degrading organisms did not increase appreciably. From 10 to 12% of the 14C from radiolabeled 2,4-D, propham, glyphosate or glucose was usually incorporated into the microbial biomass of soil but 0.82% or less of the 14C from simazine or ring- or carbonyl-labeled carbofuran was converted to biomass. It is suggested that pesticides that support microbial growth may be subject to accelerated biodegradation if the population remains large until the pesticide is applied again. Pesticides that do not support growth may not be subject to accelerated biodegradation.  相似文献   

12.
The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem;however,the research on the impact of the freeze-thaw action on nitrogen processes of the alpine grassland ecosystem on the Tibetan Plateau has not yet attracted much attention.In this study,the impact of the freezing strength on the soil nitrogen components of alpine grassland on the Tibetan Plateau was studied through laboratory freeze-thaw simulation experiments.The 0–10 cm topsoil was collected from the alpine marsh meadow and alpine meadow in the permafrost region of Beilu River.In the experiment,the soil samples were cultivated at –10°C,–7°C,–5°C,–3°C and –1°C,respectively for three days and then thawed at 2°C for one day.The results showed that after the freeze-thaw process,the soil microbial biomass nitrogen significantly decreased while the dissolved organic nitrogen and inorganic nitrogen significantly increased.When the freezing temperature was below –7°C,there was no significant difference between the content of nitrogen components,which implied a change of each nitrogen component might have a response threshold toward the freezing temperature.As the freeze-thaw process can lead to the risk of nitrogen loss in the alpine grassland ecosystem,more attention should be paid to the response of the soil nitrogen cycle of alpine grasslands on the Tibetan Plateau to the freeze-thaw process.  相似文献   

13.
Detoxification of glyphosate in soil   总被引:1,自引:0,他引:1  
Detoxification of glyphosate in not-autoclaved and autoclaved soils was followed by bioassay with wheat. Comparisons are made with detoxification of MCPA under similar conditions followed by bioassay with spring rape. The well known pattern for microbial metabolism of MCPA with a ‘lag’-phase preceding the rapid degradation was shown. The initial rapid inactivation of glyphosate is by adsorption, but the results also clearly indicate that the further disappearance of activity mainly depends on microbial degradation. Glyphosate does not seem to sustain microbial growth, which indicates that it is degraded by co-metabolism. In autoclaved soil the possibility of a slight chemical degradation or an adsorption that becomes stronger with time could not be excluded.  相似文献   

14.
Studies on the effect of a pesticide spray sequence on the behaviour of terbutryn residues and on soil microbial activity. Part II. Influence on microbial activity In laboratory incubation experiments (at 10 and 20°C and 30 and 60% soil water-holding capacity) soil microbial activities (dehydrogenase, respiration after glucose amendment and nitrogen transformations) were scarcely affected by 20·9 and 28·0 mg kg?1, respectively, of terbutryn in two soils of different sorption properties. In contrast, dinosebacetate, alone or mixed with terbulryn, triadimefon or parathion, inhibited dehydrogenase activity and respiration even at a low rate of application (2·87 mg kg?1). Following application of a 10 times higher rate to a highly adsorbent soil there was an initial inhibition of nitrification followed by an enhanced rate of nitrogen mineralization. Triadimefon and parathion, alone and in combination with other pesticides, caused both stimulation and inhibition of microbial activity; the reason is not clear. The effects on dehydrogenase and respiration were confirmed in field experiments. Dehydrogenase activity was the most sensitive and so could be a useful test for the side-effects of pesticides on soil micro-organisms. Additional work on nitrogen transformations is needed to interpret the results.  相似文献   

15.
The rate of aerobic evolution of 14CO2 from 14C-glyphosate labelled in the methylphosphonyl carbon, varied 100-fold within a group of five Hawaiian sugarcane soils. The rate depended inversely on the degree of soil binding, probably associated with the phosphonic acid moiety, and to a less certain extent on soil pH and soil organic matter. After an initial rapid degradation, the rate of 14CO2 evolution in three soils reached a constant at 16–21 days which continued to the 60-day termination. The other two soils showed a continually decreasing rate throughout. Two soils released over 50% of the labelled carbon in 60 days, a third released 35%, while the remaining soils released 1.2 and 0.8% respectively. Labelled carbon in the soils after 60 days consisted of glyphosate and one metabolite, aminomethyl-phosphonic acid, with glyphosate predominating in high fixing soils. The 14C could be extracted almost completely with NaOH solution, and remained mainly in solution after acidification.  相似文献   

16.
The very wide use of glyphosate to control weeds in agricultural, silvicultural and urban areas throughout the world requires that special attention be paid to its possible transport from terrestrial to aquatic environments. The aim of this review is to present and discuss the state of knowledge on sorption, degradation and leachability of glyphosate in soils. Difficulties of drawing clear and unambiguous conclusions because of strong soil dependency and limited conclusive investigations are pointed out. Nevertheless, the risk of ground and surface water pollution by glyphosate seems limited because of sorption onto variable-charge soil minerals, e.g. aluminium and iron oxides, and because of microbial degradation. Although sorption and degradation are affected by many factors that might be expected to affect glyphosate mobility in soils, glyphosate leaching seems mainly determined by soil structure and rainfall. Limited leaching has been observed in non-structured sandy soils, while subsurface leaching to drainage systems was observed in a structured soil with preferential flow in macropores, but only when high rainfall followed glyphosate application. Glyphosate in drainage water runs into surface waters but not necessarily to groundwater because it may be sorbed and degraded in deeper soil layers before reaching the groundwater. Although the transport of glyphosate from land to water environments seems very limited, knowledge about subsurface leaching and surface runoff of glyphosate as well as the importance of this transport as related to ground and surface water quality is scarce.  相似文献   

17.
The rate of transformation of a pesticide as a function of the depth in the soil is needed as an input into computations on the risk of residues leaching to groundwater. The herbicide bentazone was incubated at 15 °C in soil materials derived from four layers at depths of up to 2.5 m in a humic sandy soil profile with a fluctuating water table (0.8 to 1.4 m), while simulating the redox conditions existing in the field. Gamma‐irradiation experiments indicated that bentazone is mainly transformed by microbial activity in the soil. The rate constant for transformation was highest in the humic sandy top layer; it decreased with depth in the sandy vadose subsoil. However, material from the top of the phreatic aquifer had a higher rate constant than that from the layers just above. The presence of fossil organic material in the fluviatile water‐saturated sediment probably stimulated microbial activity and bentazone transformation. The changes in the transformation rate constant with depth showed the same trend as those in some soil factors, viz organic carbon content, water‐extractable phosphorus and microbial density as measured by fluorescence counts. However, the (low) concentration of dissolved organic carbon (DOC) in the top of the aquifer did not fit the trend. The rate constant for bentazone transformation in the layers was higher at lower initial contents of the herbicide. © 2001 Society of Chemical Industry  相似文献   

18.
Wang H  Wu J  Yates S  Gan J 《Pest management science》2008,64(10):1074-1079
BACKGROUND: Metsulfuron-methyl is widely used for controlling many annual grasses and broadleaf weeds in cereal crops. Nonetheless, increasing evidence has demonstrated that even extremely low levels of metsulfuron-methyl residues in soil can be toxic to subsequent crops or non-target organisms. The behavior of herbicides in soils is mostly related to their residual forms. The intent of the present study was to investigate the dynamics of extractable residues (ERs) and non-extractable residues (NERs) of (14)C-metsulfuron-methyl in twelve Chinese paddy soils and their relationships to soil properties.RESULTS: ERs decreased gradually after application, whereas NERs increased rapidly during the initial 28 days, and gradually decreased thereafter. ERs and NERs were respectively 10.1-67.9% and 5.6-28.7% of applied radioactivity in soils at 224 days after application. ERs correlated positively with soil pH and silt fractions, and negatively with microbial biomass carbon (MBC) and clay fractions, but the opposite was observed for NERs.CONCLUSION: Both ERs and NERs may be present in the soil at the time of planting following rice crops, and the risk of phytotoxic effects needs to be considered. Soil pH, MBC and clay/silt fractions were the main factors in affecting the amounts of both ERs and NERs of metsulfuron-methyl in the tested soils. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

19.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

20.
Plant residue and soil depth effects on metribuzin degradation were investigated. Dundee silt loam soil collected at depth increments of 0–10 cm (SUR) and 10–35 cm (SUB) was treated with labeled [5?14 C]metribuzin. Samples were assayed at several time points up to 140 days after treatment. Soybean residue was added to half of the SUR samples (RES), with remaining SUR unamended (NORES). None of the SUB samples were amended with soybean residue. Metribuzin mineralization to 14CO2 proceeded more slowly in RES and SUB than in NORES and SUR, respectively. Extractable components in SUR samples included polar metabolites, plus deaminated metribuzin (DA) in the RES, and parent metribuzin in the NORES. Deaminated diketometribuzin (DADK) and metribuzin comprised major 14C components extracted from SUB, while in SUR, faster degradation of metabolites resulted in metrizubin as the primary identifiable compound. Unextractable 14C increased until day 35 for both RES and NORES, after which it remained constant for NORES. but declined for RES. A corresponding rise in RES polar 14C suggested that as soybean residue decomposed, 14C bound in the residue was released as extractable polar material. Soil with soybean residue accumulation may alter metabolite degradation patterns, but does not impede initial metribuzin degradation. Depth differences in metribuzin degradation were attributed to reductions in microbial activity with increasing soil depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号