首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antifungal activity of the novel compound acibenzolar-S-methyl (CGA245704: benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester) was examined in vitro. No remarkable activity was observed on mycelial growth and conidial germination of almost all fungi tested. Only melon isolates of Didymella bryoniae were sensitive to this compound. On potted plants, acibenzolar-S-methyl showed control efficacy on anthracnose and scab of cucumber and rust of Japanese pear but not on Fusarium wilt of cucumber. In field trials, the occurrence of both rust and scab on Japanese pear was suppressed with this compound. Based on these experiments, it was suggested that acibenzolar-S-methyl induced resistance to some but not all diseases on cucumber and Japanese pear. Induction of disease resistance in cucumber was rapidly triggered after treatment with acibenzolar-S-methyl.  相似文献   

2.
Localized infection of cucumber leaves with Colletotrichum lagenarium induced resistance against infection after challenge inoculation with pathogenic fungi, including C. lagenarium and Pythium ultimum var. ultimum. Systemic acquired resistance in the hypocotyl was observed when challenge inoculation was made 4 to 7 days after the first inoculation of cotyledons. Seven days after the first inoculation of a primary leaf, induced resistance against the challenge inoculation in the hypocotyl was also observed. However, the hypocotyl did not develop induced resistance when plants were challenged by a wound inoculation with P. ultimum. Received 9 June 1999/ Accepted in revised form 13 December 1999  相似文献   

3.
Induced Disease Resistance in Plants by Chemicals   总被引:23,自引:0,他引:23  
Plants can be induced locally and systemically to become more resistant to diseases through various biotic or abiotic stresses. The biological inducers include necrotizing pathogens, non- pathogens or root colonizing bacteria. Through at network of signal pathways they induce resistance spectra and marker proteins that are characteristic for the different plant species and activation systems. The best characterized signal pathway for systemically induced resistance is SAR (systemic acquired resistance) that is activated by localized infections with necrotizing pathogens. It is characterized by protection against a broad range of pathogens, by a set of induced proteins and by its dependence on salicylic acid (SA) Various chemicals have been discovered that seem to act at various points in these defense activating networks and mimic all or parts of the biological activation of resistance. Of these, only few have reached commercialization. The best- studied resistance activator is acibenzolar-5-methyl (BION). At low rates it activates resistance in many crops against a broad spectrum of diseases, including fungi, bacteria and viruses. In monocots, activated resistance by BION typically is very long lasting, while the lasting effect is less pronounced in dicots. BION is translocated systemically in plants and can take the place of SA in the natural SAR signal pathway, inducing the same spectrum of resistance and the same set of molecular markers. Probenazole (ORYZEMATE) is used mainly on rice against rice blast and bacterial leaf blight. Its mode of action is not well understood partly because biological systems of systemically induced resistance are not well defined in rice. Treated plants clearly respond faster and in a resistant manner to infections by the two pathogens. Other compounds like beta-aminobutyric acid as wdl as extracts from plants and microorganisms have also been described as resistance inducers. For most of these, neither the mode of action nor reliable pre-challenge markers are known and still other pathways for resistance activation are suspected. Resistance inducing chemicals that are able to induce broad disease resistance offer an additional option for the farmer to complement genetic disease resistance and the use of fungicides. If integrated properly in plant health management programs, they can prolong the useful life of both the resistance genes and the fungicides presently used.  相似文献   

4.
以5种黄瓜主要病原菌作为诱导抗病因子,研究其对黄瓜主要病害的作用,结果发现黄瓜经病原菌诱导后,可以产生对诱导病原菌及其它病原菌引起病害的交互保护作用,并且诱导的交互保护作用与诱导浓度、诱导间隔期、不同品种存在相关性.诱导效果不随诱导接种浓度的升高而升高.在黑星病菌对霜霉病菌的诱导作用中,以浓度为1×102个/ml的黑星病菌孢子悬浮液的诱导效果最好,诱导间隔期为48h黄瓜黑星病菌对霜霉病的交互保护作用最明显,抗性品种的交互保护作用明显好于感病品种;炭疽病菌可诱导黄瓜有效抑制褐斑病的发生,但挑战接种褐斑病菌后,却促进了炭疽病的发生.诱导接种炭疽病菌后再挑战接种褐斑病菌12d,对褐斑病的防效为92.07%.  相似文献   

5.
The ability of acibenzolar-S-methyl to induce resistance in pepper plants against Xanthomonas campestris pv. vesicatoria was investigated in both growth chamber and open field conditions. Growth chamber experiments showed that acibenzolar-S-methyl (300M) treatment protects pepper plants systemically and locally against X. campestris pv. vesicatoria. Evidence for this was a reduction in the number and diameter of bacterial spots and bacterial growth in planta. Systemic protection was also exerted by the acibenzolar-S-methyl acid derivative, CGA 210007, which may be produced by hydrolysis in the plant. The efficacy of acibenzolar-S-methyl was also found in open field conditions, where both leaves and fruit were protected from the disease. The highest efficacy (about 67%) was obtained by spraying the plants 6–7 times every 8–12 days with a mixture of acibenzolar-S-methyl and copper hydroxide (2.5 + 40ghl–1 active ingredient). Persistence and translocation data obtained from the growth chamber experiments revealed a persistence of acibenzolar-S-methyl lasting five days after treatment with rapid translocation and negligible levels of acid derivative formation. Since the protection exerted by acibenzolar-S-methyl against bacterial spot disease was observed when the inducer was completely degraded, it would appear to be due to SAR activation.  相似文献   

6.
从不同处理方法、酶液pH变化等方面对果胶酶诱导黄瓜抗黑星病效能的影响进行了研究。结果表明,在果胶酶的4种不同处理试验中,以全株表面喷雾法处理的黄瓜黄化子叶黑星病的病情指数降低最多,浓度100和200U/ml的诱导防病效果分别为56.34%和64.13%;下胚轴注射、灌根和漫种等3种处理方法的诱导抗病效果均不显著。经果胶酶诱导处理的黄瓜绿苗叶片病情明显降低,而处理叶上部的未处理叶片发病情况与相应对照差别不大。该结果表明,果胶酶诱导黄瓜绿苗抗黑星病的作用属于局部诱导。果胶酶处理次数的增加可增强其诱导抗病效果,并延长诱导抗病时间。酶液pH变化对果胶酶的诱导抗病作用影响显著,pH5.5时,2个浓度的诱导效果最好,分别为51.87%和66.42%。  相似文献   

7.
Pseudomonas corrugata strain 13 and P. aureofaciens strain 63-28, applied to roots, induced systemic resistance against Pythium aphanidermatum in cucumber roots. Salicylic acid (SA) from bacterial culture or plant tissues was quantified by high performance liquid chromatography. Both strains produced SA in King's B broth and also induced cucumber root to accumulate endogenous SA one day after bacterial inoculation. Using a split root system, more SA accumulated in roots treated with bacteria than in distant roots on the opposite side of the root system in the first two days, but this difference disappeared after 3–4 days. SA levels were significantly higher in plants treated with bacteria compared to the split control, from one to five days after bacterization. SA did not inhibit mycelial growth of Pythium aphanidermatum at 100–200µgml–1 in vitro, but higher levels inhibited mycelial growth. Zoospore germination increased at concentrations of 10–500µgml–1, but decreased at 1000µgml–1 compared to lower concentrations. Exogenously applied SA failed to induce local or systemic resistance against a challenge infection by the pathogen in planta. The results of this study show that exogenous applied SA does not induce systemic resistance to cucumber root rot caused by P. aphanidermatum, but endogenous SA accumulation in cucumber roots may be involved in induced systemic resistance.  相似文献   

8.
Five fungal isolates (Trichoderma, Fusarium, Penicillium, Phoma and a sterile fungus) from zoysiagrass rhizosphere that promote plant growth were tested for their ability to induce systemic resistance in cucumber plants against Colletotrichum orbiculare. Roots of cucumber plants were treated with these fungal isolates using barley grain inocula (BGI), mycelial inocula (MI) or culture filtrate (CF). Most isolate/inoculum form combinations significantly reduced the disease except BGI of Trichoderma. These fungal isolates were also evaluated for induction of systemic resistance against bacterial angular leaf spot and Fusarium wilt by treatment with BGI. Penicillium, Phoma and the sterile fungus significantly reduced the disease incidence of bacterial angular leaf spot. Phoma and sterile fungus protected plants significantly against Fusarium wilt. Roots treated with CFs of these fungal isolates induced lignification at Colletotrichum penetration points indicating the presence of an elicitor in the CFs. The elicitor activity of CFs was evaluated by the chemiluminescence assay using tobacco callus and cucumber fruit disks. The CFs of all isolates elicited conspicuous superoxide generation. The chemiluminescence activity of the CF of Penicillium was extremely high, and its intensity was almost 100-fold higher than that of other isolates. The chemiluminescence activity was not lost following treatment with protease or autoclaving or after removal of lipid. The MW 12,000 dialyzed CF fraction was highly effective in eliciting chemiluminescence activity. Chemiluminescence emission from cucumber fruit disks treated with Penicillium was the same as that obtained from tobacco callus, except that the lipid fraction also showed a high activity. Both the MW 12,000 fraction and the lipid fraction induced lignification in the epidermal tissues of cucumber hypocotyls.  相似文献   

9.
玫瑰黄链霉菌Strempomyces roseoflavus Men-myco-93-63是分离自马铃薯疮痂病自然衰退土壤中的一株拮抗链霉菌,该菌株及其代谢产物对多种重要的植物病原菌都具有较强的抑制作用,为了探明该生防菌产生的诱抗粗蛋白对黄瓜抗病性的诱导作用,采用离体叶片接种的方法,发现诱抗粗蛋白诱导黄瓜叶片灰霉病发病直径显著小于对照;经组织染色法和紫外分光光度计法测定,发现诱抗粗蛋白可以诱导黄瓜叶片中活性氧(ROS)的积累和超氧化物歧化酶(SOD)、过氧化物酶(POD)和多酚氧化酶(PPO)等抗病相关酶活性的显著提高;通过实时荧光定量PCR(qRT-PCR)测定,发现诱抗粗蛋白还可以诱导黄瓜叶片中PR-1aPR-3PR-9NPR1等抗病相关基因表达的上调,试验结果表明Men-myco-93-63产生的诱抗粗蛋白能够诱导黄瓜抗病性的提升。  相似文献   

10.
Certain phosphate salts are known inducers of systemic acquired resistance (SAR). In the present study, a local spray application of dipotassium hydrogenphosphate (K2HPO4) was effective in inducing a high level of systemic protection in cucumber plants against anthracnose caused by Colletotrichum lagenarium. Resistance induction by K2HPO4 was associated with localized cell death in cucumber leaves treated with the phosphate salt. The cell death observed, subsequently resulted in the appearance of macroscopically visible, necrotic spots. Appearing lesions resembled those provoked by tobacco necrosis virus (TNV) during a hypersensitive response (HR) that leads to pathogen-induced activation of SAR. Phosphate-mediated cell death was preceeded by a rapid generation of superoxide and hydrogen peroxide. As a further consequence of phosphate application, a local and systemic increase in free and conjugated salicylic acid (SA) levels was detected. The phosphate-induced responses were also identified with a similar time range in cucumber leaves that had been pre-inoculated with TNV. In contrast, none of these responses was triggered by application of the commercial plant activator benzo[1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester (BTH), which nevertheless was highly effective in inducing SAR in cucumber against anthracnose. In conclusion, the chemical SAR inducer K2HPO4 and the biological inducer TNV share some common early steps in signal transduction leading to SAR in cucumber, which differ from those involved in BTH-mediated SAR.  相似文献   

11.
海藻渣资源化高效利用对环境保护具有重要意义.通过比较海藻渣与棘孢木霉菌剂、解淀粉芽胞杆菌菌剂单一和复配使用对黄瓜苗期枯萎病的防效和寄主防御反应的影响,明确海藻渣和复合菌剂协同增效作用.结果表明,1%海藻渣+3.0×105 cfu/g棘孢木霉菌剂+2.0×108 cfu/g解淀粉芽胞杆菌菌剂(T1)拌土处理对枯萎病防效达...  相似文献   

12.
13.
Hydrogen peroxide (H2O2) and lignin induced by acibenzolar-S-methyl (ASM) during the expression of systemic acquired resistance (SAR) of cucumber plants against the fungus Colletotrichum orbiculare was analysed with electron microscopy and energy-filtering electron microscopy (EFEM). ASM pretreatment consistently led to the blockage of appressorial penetration pegs into leaves at early stages after inoculation, whereas the fungus was able to grow into the vascular tissue after distilled water pretreatment. The blocked pegs, seen frequently at epidermal pectin layers in leaves of ASM-treated plants, were surrounded by abundant electron-dense amorphous material and dots. These were identified as lignin, based on their appearance and high reactivity with KMnO4. Lignin first appeared as an amorphous material at pectin layers, and then as dots in some areas of the material. The results showed that ASM caused SAR in leaves via faster formation of lignin within 1 day after inoculation. After CeCl3 treatment to detect H2O2, H2O2-reactive products (cerium perhydroxides) were seen near ASM-induced lignin formation sites in pectin layers. EFEM analysis showed that Ce and O were located at the same sites as the lignin dots, suggesting that lignin was associated with sources of H2O2 generation. The results indicate that the faster H2O2 generation and lignification induced by ASM were the potential causes of SAR.  相似文献   

14.
阿泰灵是我国自主研发的植物免疫蛋白制剂,能诱导多种植物的广谱抗性,并能促进植物生长、提高产量,但在小麦生产中尚未开展相关研究。2016年作者分别在山东省和河南省开展了阿泰灵对小麦抗病和促生长的田间试验,并初步研究了阿泰灵诱导小麦抗病的作用机制。研究结果表明,用400倍阿泰灵稀释液拌种,并分别在返青期、拔节期和扬花期进行1000倍喷雾使用,能显著提高小麦叶片的叶绿素含量、须根数和根系活力;对小麦纹枯病、白粉病和叶锈病3种病害的诱抗效果达到29.3%~64.9%;穗长、穗粒数和千粒重也显著提高,产量增加15%以上。阿泰灵喷雾处理小麦6叶期幼苗后12~24 h,POD、SOD和CAT防御酶活性提高45%,抗病相关基因PR-1、PR-2和PR-5也比未处理小麦转录表达提高10倍。以上研究结果表明,阿泰灵能有效促进小麦生长,并提高小麦抗病性;防御酶活性提高和抗病基因上调表达是阿泰灵诱导小麦抗病增产的重要作用机制之一。  相似文献   

15.
The effect of induced systemic resistance (ISR) by Pseudomonas rhizobacteria on the pre- and post-infection development of Pythium aphanidermatum on cucumber roots was investigated. Cucumber plants (cv. Corona) were grown in vermiculite, roots were split with one side bacterized with Pseudomonas corrugata strain 13 or P. aureofaciens strain 63-28 (bacterized roots) and the other distant side was treated with water (distant, induced roots). For the non-induced control, roots on the bacterized side were treated with buffer instead of the bacterial treatment. Intact, non-split roots were also treated with the bacteria or buffer as a control. Cucumber root tissue from these treatments were harvested and incubated with a zoospore suspension of P. aphanidermatum for three hours. Most of the zoospores in the suspension were stimulated to encyst or germinate. The numbers of germinated zoospores were significantly decreased on distant induced cucumber roots in comparison to non-induced controls. Germination was also reduced on intact bacterized roots, compared to controls. There was less attachment, germ tube production and penetration on roots bacterized or induced by the rhizobacteria compared to non-induced roots. Effects were significantly greater on bacterized roots (roots colonized by bacteria) compared to distant induced roots (roots with the opposite side bacterized). Systemic resistance induced by the two Pseudomonas spp. also reduced pathogen spread on split cucumber roots in planta. Crown infection from induced or bacterized roots was delayed for four to six days in comparison to the non-induced control. Results indicated that Pseudomonas spp. can exert both an indirect influence on P. aphanidermatum zoospore behaviour and infection via induced systemic resistance (ISR) and a local influence via antibiosis or local induced resistance.  相似文献   

16.
内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性   总被引:12,自引:0,他引:12  
在对甜瓜枯萎病温室防效试验的研究中发现,内生枯草芽孢杆菌B6菌株与绿色木霉T23菌株复合处理的相对防效达82.22%,比B6和T23的单独处理分别提高32.8%和146.7%。分析比较了B6和T23单独和复合处理甜瓜幼苗后,甜瓜根部防御反应相关酶系苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶、β-1,3-葡聚糖酶比活性的变化趋势。结果表明:内生细菌B6和木霉T23复合接种,其苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶和β-1,3-葡聚糖酶比活性比单独接种有不同程度的增强,这种变化在挑战接种甜瓜枯萎病菌之后更加明显。  相似文献   

17.
本文研究内生菌醇提取物WS对水稻稻瘟病的诱导抗性,在水稻3叶1心期喷施3种浓度WS,通过诱导抗病效果筛选WS最佳使用浓度,同时研究最佳浓度对水稻相关抗病防御酶活性的影响.结果表明,浓度50 ng/mL WS喷雾处理时诱导抗病效果最佳,病情指数降低12.89,诱导效果达到55.5%.能够显著提高PAL、PPO、几丁质酶活性,PAL活性高于CK处理30.28%,PPO、几丁质酶活性分别是CK处理的1.18、1.70倍.  相似文献   

18.
从毛头鬼伞Coprinus comatus中提取的碱性糖蛋白Y3可以降低烟草花叶病毒(TMV)的侵染.克隆获得Y3蛋白cDNA后与真核表达载体pPIC-9k连接,重组载体pPIC-9k-Y3成功电转化入毕赤酵母Pichia pastoris后,转化子在28℃、250 r/min培养条件下,使用1.0%甲醇诱导表达6d,...  相似文献   

19.
20.
草酸青霉菌果胶酶诱导黄瓜抗黑星病研究   总被引:6,自引:0,他引:6  
 本文就草酸青霉菌(Penicillium oxalicum)的固态发酵提取产物--果胶酶粗酶液诱导黄瓜对黑星病(Cladosporium cucumerinum)的抗性进行了研究。以果胶酶粗酶液喷雾处理4个感黑星病黄瓜品种的黄化苗,48 h后挑战接种黑星病菌孢子悬液,其中"中农5号"黄瓜品种表现的诱导抗病效果最好,诱抗效果达62.51%。不同浓度果胶酶诱导处理黄瓜,发现果胶酶浓度在20 U/mL时,可导致黄瓜发病略高于对照;在40~200 U/mL浓度范围内,诱导效果较为明显。通过研究果胶酶诱导抗病的时效性,表明诱导处理前接种病菌或诱导处理后0、6 h接种的各处理病情指数与对照间没有差别,而诱导处理12~72 h后接种病菌的,果胶酶的诱导抗病效果均很明显,诱抗效果达29.64%~60.02%。实验还表明,随着挑战接种压力的增大,果胶酶的诱导抗病效果降低。果胶酶不能抑制黑星病菌孢子萌发,相反可以促进孢子萌发和芽管生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号