首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential application of solvent extraction, gel permeation chromatography, and RP-HPLC in combination with taste dilution analyses, followed by LC-MS and 1D/2D-NMR experiments and thiolytic degradation, revealed that, besides theobromine and caffeine, the flavan-3-ols epicatechin, catechin, procyanidin B-2, procyanidin B-5, procyanidin C-1, [epicatechin-(4beta-->8)](3)-epicatechin, and [epicatechin-(4beta-->8)](4)-epicatechin were among the key compounds contributing to the bitter taste as well as the astringent mouthfeel imparted upon consumption of roasted cocoa. In addition, a series of quercetin, naringenin, luteolin, and apigenin glycopyranosides as well as a family of not previously identified amino acid amides, namely, (+)-N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid, (+)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-aspartic acid, (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine, (+)-N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-aspartic acid, and (+)-N-(E)-cinnamoyl-L-aspartic acid, have been identified as key astringent compounds of roasted cocoa. Furthermore, (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-3-hydroxy-l-tyrosine (clovamide), (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-tyrosine (deoxyclovamide), and (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tyrosine, reported previously as antioxidants, have been found as contributors of cocoa's astringent taste. By means of the half-tongue test, the taste thresholds of flavan-3-ols and glycosides have been determined.  相似文献   

2.
Since recent reports on the role of N-phenylpropenoyl-L-amino acids as powerful antioxidants and key contributors to the astringent taste of cocoa nibs, there is an increasing interest in the concentrations of these phytochemicals in plant-derived foods. A versatile analytical method for the accurate quantitative analysis of N-phenylpropenoyl-L-amino acids in plant-derived foods by means of HPLC-MS/MS and synthetic stable isotope labeled N-phenylpropenoyl-L-amino acids as internal standards was developed. By means of the developed stable isotope dilution assay (SIDA), showing recovery rates of 95-102%, 14 N-phenylpropenoyl-L-amino acids were quantified for the first time in cocoa and coffee samples. On the basis of the results of LC-MS/MS experiments as well as cochromatography with the synthetic reference compounds N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan, N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan, and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine, respectively, were detected for the first time in cocoa powder, and (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-tyrosine, (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tyrosine, N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine, (+)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-aspartic acid, (+)-N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid, N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan, N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan, and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tryptophan, respectively, were detected for the first time in coffee beverages.  相似文献   

3.
Fresh exudates from the lacquer tree, Rhus vernicifera DC, were extracted with acetone and the solution was chromatographed to isolate monomer, dimer, trimer, and oligomer fractions of urushiols. Constituents of the monomeric and dimeric fractions were then identified by two-dimensional (2D) 1H-13C heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond coherence (HMBC) NMR spectroscopic techniques. The results showed that the monomeric fraction contained 3-[8'Z,11'E,13'Z-pentadecatrienyl]catechol (1), 3-[8'Z,11'Z,14'-pentadecatrienyl]catechol (2), and 3-pentadecanyl]catechol (3), which was verified by HPLC analysis. The dimeric fraction contained 8'-(3' ',4' '-dihydroxy-5' '-alkenyl)phenyl-3-[9'E,11'E,13'Z-pentadecatrienyl]catechol (4), 14'-(3' ',4' '-dihydroxy-5' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadecatrienyl]catechol (5), 2-hydroxyl-3- or -6-alkenylphenyl ethyl ether (6), 14'-(3' ',4' '-dihydroxy-2' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadeca-trienyl]catechol (7), 15'-(2' '-hydroxy-3' '- or -6' '-alkenyl)phenyloxy-3-[8'Z,11'Z,13'E)-pentadecatrienyl]catechol (8), 14'-(2' ',3' '-dihydroxy-4' '-alkenyl)phenyl-3-[8'Z,10'E,12'E-pentadecantrienyl]catechol (9), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-4,3'-biphenyl (10), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-4,4'-biphenyl (11), 1,1',2,2'-tetrahydroxy-6,6'-dialkenyl-5,4'-biphenyl (12), and 1,2,1'-trihydroxy-6,6'-dialkenyldibenzofuran (13) as constituents. In addition, dimeric ethers and peroxides, such as compounds 14 and 15, were produced by autoxidation of monomeric urushiols in atmospheric air. The possible reaction mechanisms for the dehydrogenative polymerization of urushiols by Rhus laccase present in the fresh raw exudates under the atmospheric oxygen are discussed on the basis of structures identified. This is of primary importance because the use of the urushi exudates as coating materials does not involve organic solvents and is an environmentally friendly process.  相似文献   

4.
Sensory-guided decomposition of roasted cocoa nibs revealed that, besides theobromine and caffeine, a series of bitter-tasting 2,5-diketopiperazines and flavan-3-ols were the key inducers of the bitter taste as well as the astringent mouthfeel imparted upon consumption of roasted cocoa. In addition, a number of polyphenol glycopyranosides as well as a series of N-phenylpropenoyl-l-amino acids have been identified as key astringent compounds of roasted cocoa. In the present investigation, a total of 84 putative taste compounds were quantified in roasted cocoa beans and then rated for the taste contribution on the basis of dose-over-threshold (DoT) factors to bridge the gap between pure structural chemistry and human taste perception. To verify these quantitative results, an aqueous taste reconstitute was prepared by blending aqueous solutions of the individual taste compounds in their "natural" concentrations. Sensory analyses revealed that the taste profile of this artificial cocktail was very close to the taste profile of an aqueous suspension of roasted cocoa nibs. To further narrow down the number of key taste compounds, finally, taste omission experiments and human dose/response functions were performed, demonstrating that the bitter-tasting alkaloids theobromine and caffeine, seven bitter-tasting diketopiperazines, seven bitter- and astringent-tasting flavan-3-ols, six puckering astringent N-phenylpropenoyl-l-amino acids, four velvety astringent flavonol glycosides, gamma-aminobutyric acid, beta-aminoisobutyric acid, and six organic acids are the key organoleptics of the roasted cocoa nibs.  相似文献   

5.
Application of chromatographic separation and taste dilution analyses recently revealed, besides a series of flavon-3-ol glycosides and (E)/(Z)-aconitic acid, four nitrogen-containing phytochemicals as the key astringent and mouth-drying compounds in red currants (Ribes rubrum). The isolation and structure determination of the astringent indoles 3-carboxymethyl-indole-1-N-beta-D-glucopyranoside (1) and 3-methylcarboxymethyl-indole-1-N-beta-D-glucopyranoside (2), as well as the astringent, noncyanogenic nitriles 2-(4-hydroxybenzoyloxymethyl)-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile (3) and 2-(4-hydroxy-3-methoxybenzoyloxymethyl)-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile (4) by means of 1D/2D NMR, LC-MS/MS, and UV-vis spectroscopy are reported. The structures of compounds 1 and 2 were confirmed by synthesis. Using the recently developed half-tongue test, human recognition thresholds for the astringent and mouth-drying nitrogen compounds were determined to be between 0.0003 and 5.9 micromol/L (water). In particular, the extraordinarily low threshold of 0.0003 micromol/L evaluated for the indole 1 represents the lowest recognition threshold of any astringent phytochemical reported to date.  相似文献   

6.
Six compounds were isolated from fresh rhizomes of fingerroot (Boesenbergia pandurata Schult.) as strong antimutagens toward 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) in Salmonella typhimurium TA98. These compounds were 2',4',6'-trihydroxychalcone (pinocembrin chalcone; 1), 2',4'-dihydroxy-6'-methoxychalcone (cardamonin; 2), 5,7-dihydroxyflavanone (pinocembrin; 3), 5-hydroxy-7-methoxyflavanone (pinostrobin; 4), (2,4,6-trihydroxyphenyl)-[3'-methyl-2'-(3' '-methylbut-2' '-enyl)-6'-phenylcyclohex-3'-enyl]methanone (5), and (2,6-dihydroxy-4-methoxyphenyl)-[3'-methyl-2'-(3' '-methylbut-2' '-enyl)-6'-phenylcyclohex-3'-enyl]methanone (panduratin A; 6). Compound 5 was a novel compound (tentatively termed 4-hydroxypanduratin A), and 1 was not previously reported in this plant, whereas 2-4 and 6 were known compounds. The antimutagenic IC(50) values of compounds 1-6 were 5.2 +/- 0.4, 5.9 +/- 0.7, 6.9 +/- 0.8, 5.3 +/- 1.0, 12.7 +/- 0.7, and 12.1 +/- 0.8 microM in the preincubation mixture, respectively. They also similarly inhibited the mutagenicity of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). All of them strongly inhibited the N-hydroxylation of Trp-P-2. Thus, the antimutagenic effect of compounds 1-6 was mainly due to the inhibition of the first step of enzymatic activation of heterocyclic amines.  相似文献   

7.
Sequential application of solvent extraction, gel permeation chromatography, and RP-HPLC in combination with taste dilution analyses, followed by LC-MS and 1D/2D NMR experiments, led to the discovery and structure determination of 25 key astringent compounds of red currant juice. Besides several flavonol glycosides, in particular, 3-carboxymethyl-indole-1-N-beta-D-glucopyranoside, 3-methylcarboxymethyl-indole-1-N-beta-D-glucopyranoside, and a family of previously not identified compounds, namely, 2-(4-hydroxybenzoyloxymethyl)-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile, 2-(4-hydroxy-3-methoxybenzoyloxymethyl)-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile, (E)-6-[3-hydroxy-4-(O-beta-D-glucopyranosyl)phenyl]-5-hexen-2-one named dehydrorubrumin, and (3E,5E)-6-[3-hydroxy-4-(O-beta-D-glucopyranosyl)phenyl]-3,5-hexadien-2-one named rubrumin, have been identified. Determination of the oral astringency thresholds by means of the half-tongue test revealed that the lowest thresholds of 0.3 and 1.0 nmol/L were found for the nitrogen-containing 3-carboxymethyl-indole-1-N-beta-D-glucopyranoside and 3-methylcarboxymethyl-indole-1-N-beta-D-glucopyranoside, which do not belong to the group of plant polyphenols.  相似文献   

8.
Maple syrup is made by boiling the sap collected from certain maple ( Acer ) species. During this process, phytochemicals naturally present in tree sap are concentrated in maple syrup. Twenty-three phytochemicals from a butanol extract of Canadian maple syrup (MS-BuOH) had previously been reported; this paper reports the isolation and identification of 30 additional compounds (1-30) from its ethyl acetate extract (MS-EtOAc) not previously reported from MS-BuOH. Of these, 4 compounds are new (1-3, 18) and 20 compounds (4-7, 10-12, 14-17, 19, 20, 22-24, 26, and 28-30) are being reported from maple syrup for the first time. The new compounds include 3 lignans and 1 phenylpropanoid: 5-(3″,4″-dimethoxyphenyl)-3-hydroxy-3-(4'-hydroxy-3'-methoxybenzyl)-4-(hydroxymethyl)dihydrofuran-2-one (1), (erythro,erythro)-1-[4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3,5-dimethoxyphenyl]-1,2,3-propanetriol (2), (erythro,threo)-1-[4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3,5-dimethoxyphenyl]-1,2,3-propanetriol (3), and 2,3-dihydroxy-1-(3,4- dihydroxyphenyl)-1-propanone (18), respectively. In addition, 25 other phenolic compounds were isolated including (threo,erythro)-1-[4-[(2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3-methoxyphenyl]-1,2,3-propanetriol (4), (threo,threo)-1-[4-[(2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3-methoxyphenyl]-1,2,3-propanetriol (5), threo-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol (6), erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]-1,3-propanediol (7), 2-[4-[2,3-dihydro-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2-benzofuranyl]-2,6-dimethoxyphenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (8), acernikol (9), leptolepisol D (10), buddlenol E (11), (1S,2R)-2-[2,6-dimethoxy-4-[(1S,3aR,4S,6aR)-tetrahydro-4-(4-hydroxy-3,5-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (12), syringaresinol (13), isolariciresinol (14), icariside E4 (15), sakuraresinol (16), 1,2-diguaiacyl-1,3-propanediol (17), 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (19), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (20), dihydroconiferyl alcohol (21), 4-acetylcatechol (22), 3',4',5'-trihydroxyacetophenone (23), 3,4-dihydroxy-2-methylbenzaldehyde (24), protocatechuic acid (25), 4-(dimethoxymethyl)pyrocatechol (26), tyrosol (27), isofraxidin (28), and 4-hydroxycatechol (29). One sesquiterpene, phaseic acid (30), which is a known metabolite of the phytohormone abscisic acid, was also isolated from MS-EtOAc. The antioxidant activities of MS-EtOAc (IC(50) = 75.5 μg/mL) and the pure isolates (IC(50) ca. 68-3000 μM) were comparable to that of vitamin C (IC(50) = 40 μM) and the synthetic commercial antioxidant butylated hydroxytoluene (IC(50) = 3000 μM), in the diphenylpicrylhydrazyl radical scavenging assay. The current study advances scientific knowledge of maple syrup constituents and suggests that these diverse phytochemicals may impart potential health benefits to this natural sweetener.  相似文献   

9.
Dehydrodimers of hydroxycinnamates play an important role in the cross-linking of plant cell walls. An aqueous solution of quaternary ammonium salts with a long aliphatic chain is known to spontaneously organize itself into micelles with the ionic part at the outer sphere. It is shown that regioisomeric ferulic acid dehydrodimers can be obtained in one step from trans-ferulic acid after attachment to these micelles and using the biomimetic peroxidase-H2O2 system. The surfactant hexadecyltrimethylammonium hydroxide yielded trans-4-(4-hydroxy-3-methoxybenzylidene)-2-(4-hydroxy-3-methoxyphenyl)-5-oxotetrahydrofuran-3-carboxylic acid (25%), (E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid (21%), and trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (14%), whereas the surfactant tetradecyltrimethylammonium bromide gave 4-cis, 8-cis-bis(4-hydroxy-3-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione (18%) as the main product. The use of micelles appears to be not only a new way to synthesize regioisomeric ferulic acid dehydrodimers but may also help to understand the regiospecificity of dimeric hydroxycinnamate formation in vivo.  相似文献   

10.
Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).  相似文献   

11.
Application of comparative taste dilution analyses on nonalkalized and alkalized cocoa powder revealed the detection of a velvety, smoothly astringent tasting fraction, which was predominantly present in the alkalized sample. LC-MS/MS analysis, 1D- and 2D-NMR, and CD spectroscopy as well as model alkalization reactions led to the unequivocal identification of the velvety, smoothly astringent molecules as a series of catechin- and epicatechin-C-glycopyranosides. Besides the previously reported (-)-epicatechin-8-C-beta-D-galactopyranoside, additional flavan-3-ol-C-glycosides, namely, (-)-epicatechin-8-C-beta-D-glucopyranoside, (-)-catechin-8-C-beta-D-glucopyranoside, (-)-catechin-6-C-beta-D-glucopyranoside, (-)-epicatechin-6-C-beta-D-glucopyranoside, (-)-catechin-8-C-beta-D-galactopyranoside, (-)-catechin-6-C-beta-D-galactopyranoside, (-)-catechin-6-C,8-C-beta-D-diglucopyranoside, (-)-epicatechin-6-C,8-C-beta-D-digalactopyranoside, (-)-catechin-6-C,8-C-beta-D-digalactopyranoside, and epicatechin-6-C,8-C-beta-D-diglucopyranoside, were identified for the first time in cocoa. Most surprisingly, these phenol glycoconjugates were demonstrated by model experiments to be formed via a novel nonenzymatic C-glycosylation of flavan-3-ols. Using the recently developed half-tongue test, human recognition thresholds for the astringent and mouth-drying oral sensation were determined to be between 1.1 and 99.5 micro mol/L (water) depending on the sugar and the intramolecular binding position as well as the aglycone.  相似文献   

12.
5,7,3',4'-Tetramethoxyflavone (TMF), one of the major polymethoxyflavones (PMFs) isolated from Kaempferia parviflor , has been reported possessing various bioactivities, including antifungal, antimalarial, antimycobacterial, and anti-inflammatory activities. Although several studies on the TMF have been reported, the information about the metabolism of TMF and the structures of TMF metabolites is still not yet clear. In this study, an isotope-labeling method was developed for the identification of TMF metabolites. Three isotope-labeled TMFs (5,7,3',4'-tetramethoxy[3'-D(3)]flavone, 5,7,3',4'-tetramethoxy[4'-D(3)]flavone, and 5,7,3',4'-tetramethoxy[5,4'-D(6)]flavone) were synthesized and administered to rats. The urine samples were collected, and the main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry. Five TMF metabolites were unambiguously identified as 3'-hydroxy-5,7,4'-trimethoxyflavone, 7-hydroxy-5,3',4'-trimethoxyflavone sulfate, 7-hydroxy-5,3',4'-trimethoxyflavone, 4'-hydroxy-5,7,3'-trimethoxyflavone, and 5-hydroxy-7,3',4'-trimethoxyflavone.  相似文献   

13.
Four new diepoxylignan glycosides, pinoresinol-4'-O-[6' '-O-(E)-feruloyl]-beta-D-glucopyranoside (1), pinoresinol-4'-O-[4' ',6' '-O-(E)-diferuloyl]-beta-D-glucopyranoside (2), pinoresinol-4'-O-[3' ',6' '-O-(E)-diferuloyl]-beta-D-glucopyranoside (3), and syringaresinol- 4'-O-[4' ',6' '-O-(E)-diferuloyl]-beta-D-glucopyranoside (4), together with three known compounds, pinoresinol (5), syringaresinol (6), and pinoresinol-4'-O-beta-D-glucopyranoside (7), were isolated from the n-butanol extract of Rhus javanica var. roxburghiana, and their structures were established using various spectroscopic techniques. Three glycosides (2-4) of the lignans showed moderate inhibition of multiplication of the tobacco mosaic virus.  相似文献   

14.
A bioassay-guided fractionation of water extracts from Helianthus annuus cv. SH-222 was carried out. Ten lignans and a phenylpropanoid were isolated from the polar bioactive fractions of H. annuus. This study is the first to report lignans as constituents of sunflower and is the first time that tanegool has been isolated as a natural aglycone. Additionally, we report biological activities of the isolated compounds. The general bioactivity has been evaluated using the wheat coleoptiles bioassay. The phytotoxic activities of compounds pinoresinol, lariciresinol, dihydro-dehydrodiconiferilic alcohol, and l-(4'-hydroxy-3'-methoxyphenyl)-2-[4' '-(3hydroxypropyl)-2' '-methoxyphenoxy]propane-l,3-diol were also evaluated in a bioassay on the standard target species. The structure-activity relationships are discussed.  相似文献   

15.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

16.
Six triterpenoid saponins were isolated from the edible grain quinoa, which is seeds of Chenopodium quinoa (Chenopodiaceae). Following are their structures: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (2); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->3' ')-beta-D-xylopyranosyl-(1' '-->2')-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->2' ')-beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (4); oleanolic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (5); and oleanolic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (6). The oleanane-type saponins (5, 6) were isolated for the first time in this plant, two of the phytolaccagenane (1, 3) were new compounds and two (2, 4) were previously found in quinoa. The structures were characterized on the basis of hydrolysis and spectral evidence, including 1D- and 2-D NMR (HMQC and HMBC) and ESI-MS analyses.  相似文献   

17.
Adsorption and desorption of triasulfuron by soil   总被引:10,自引:0,他引:10  
The adsorption and desorption of the herbicide triasulfuron [2-(2-chloroethoxy)-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide] by three soils, soil organic matter (H(+) and Ca(2+)-saturated), and an amorphous iron oxide were studied. Adsorption isotherms conformed to the Freundlich equation. It was found that pH is the main factor influencing the adsorption in all of the systems. Indeed, the adsorption on soils was negatively correlated with pH. The highest level of adsorption was measured on soils with low pH and high organic carbon content. Moreover, it was found that humic acid is more effective in the adsorption compared with calcium humate (the pH values of the suspensions being 3.5 and 6, respectively). Experiments on amorphous iron oxide confirmed the pH dependence. Desorption was hysteretic on soils having high organic carbon content.  相似文献   

18.
Four prenylated flavanones were isolated from the methanol extract of the flowers of Azadirachta indica (the neem tree) as potent antimutagens against Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole) in the Salmonella typhimurium TA98 assay by activity-guided fractionation. Spectroscopic properties revealed that those compounds were 5,7,4'-trihydroxy-8-prenylflavanone (1), 5,4'-dihydroxy-7-methoxy-8-prenylflavanone (2), 5,7,4'-trihydroxy-3',8-diprenylflavanone (3), and 5,7,4'-trihydroxy-3',5'-diprenylflavanone (4). All isolated compounds were found for the first time in this plant. The antimutagenic IC(50) values of compounds 1-4 were 2.7 +/- 0.1, 3.7 +/- 0.1, 11.1 +/- 0.1, and 18.6 +/- 0.1 microM in the preincubation mixture, respectively. These compounds also similarly inhibited the mutagenicity of Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). All of the compounds 1-4 strongly inhibited ethoxyresorufin O-dealkylation activity of cytochrome P450 1A isoforms, which catalyze N-hydroxylation of heterocyclic amines. However, compounds 1-4 did not show significant inhibition against the direct-acting mutagen NaN(3). Thus, the antimutagenic effect of compounds 1-4 would be mainly based on the inhibition of the enzymatic activation of heterocyclic amines.  相似文献   

19.
Two novel tocotrienols were isolated from stabilized and heated rice bran, apart from the known alpha-, beta-, gamma-, and delta-tocopherols and tocotrienols. These new tocotrienols were separated by HPLC, using a normal phase silica column. Their structures were determined by ultraviolet, infrared, nuclear magnetic resonance, circular dichroism, and high-resolution mass spectroscopies and established as desmethyl tocotrienol [3, 4-dihydro-2-methyl-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol] and didesmethy tocotrienol [3, 4-dihydro-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol]. These tocotrienols significantly lowered serum total and LDL cholesterol levels and inhibited HMG-CoA reductase activity in chickens. They had much greater in vitro antioxidant activities and greater suppression of B16 melanoma cell proliferation than alpha-tocopherol and known tocotrienols. Results indicated that the number and position of methyl substituents in tocotrienols affect their hypocholesterolemic, antioxidant, and antitumor properties.  相似文献   

20.
Recently, bioresponse-guided fractionation of black tea infusions indicated that neither the high molecular weight thearubigens nor the theaflavins, but a series of 14 flavon-3-ol glycopyranosides besides some catechins, might be important contributors to black tea taste. To further bridge the gap between pure structural chemistry and human taste perception, in the present investigation 51 putative taste compounds have been quantified in a black tea infusion, and their dose-over-threshold (Dot) factors have been calculated on the basis of a dose/threshold relationship. To confirm these quantitative results, an aqueous taste model was prepared by blending aqueous solutions of 15 amino acids, 14 flavonol-glycosides, 8 flavan-3-ols, 5 theaflavins, 5 organic acids, 3 sugars, and caffeine in their "natural" concentrations. Sensory analyses revealed that the taste profile of this artificial cocktail did not differ significantly from the taste profile of the authentic tea infusion. To further narrow the number of key taste compounds, finally, taste omission experiments have been performed, on the basis of which a reduced recombinate was prepared containing the bitter-tasting caffeine, nine velvety astringent flavonol-3-glycosides, and the puckering astringent catechin as well as the astringent and bitter epigallocatechin-3-gallate. The taste profile of this reduced recombinate differed not significantly from that of the complete taste recombinate, thus confirming these 12 compounds as the key taste compounds of the tea infusion. Additional sensory studies demonstrated for the first time that the flavanol-3-glycosides not only impart a velvety astringent taste sensation to the oral cavity but also contribute to the bitter taste of tea infusions by amplifying the bitterness of caffeine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号