首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Until recently, Erysiphe pisi was thought to be the only causal agent of powdery mildew in pea, but recent studies showed that other species such as Erysiphe trifolii and Erysiphe baeumleri can also cause this disease. Three genes, er1, er2 and Er3, conferring resistance to E. pisi have been reported so far in pea. Previous studies showed that E. trifolii and E. baeumleri were able to overcome er1 resistance, but whether er2 and Er3 were effective against E. trifolii was not known. In this study, pea accessions carrying these three genes were evaluated for resistance to E. trifolii under controlled conditions at 20 and 25 °C. In addition, these accessions were also evaluated under field conditions in Spain and in India. Analysis of the ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequences showed that E. trifolii was the causal agent of powdery mildew symptoms in lines carrying er1 in Spain and that this pathogen was also present in India. Our results showed that E. trifolii was able to overcome er1 and shows that this pathogen can also overcome Er3 resistance in some conditions. In contrast, er2 provided high level of resistance against E. trifolii in all conditions and locations studied. Temperature affected the expression of Er3 against E. trifolii, but not of er1 or er2. The pea accession JI2480, containing er2, was highly resistant and JI2302 containing er1 was susceptible to E. trifolii at both temperatures, whereas P660-4 containing Er3 was resistant at 20 °C but susceptible at 25 °C. The present study also identified sources of resistance effective against both E. pisi and E. trifolii.  相似文献   

2.
Powdery mildew, caused by Blumeria graminis f. sp. hordei (Bgh), is a worldwide disease problem on barley (Hordeum vulgare) with potentially severe impact on yield. Historically, resistance genes have been identified chiefly from cultivated lines and landraces; however, wild barley (H. vulgare subsp. spontaneum) accessions have proven to be extraordinarily rich sources of powdery mildew resistance. This study describes the characterization of a collection of 316 wild barley accessions, known as the Wild Barley Diversity Collection (WBDC), for resistance to powdery mildew and the genetic location of powdery mildew resistance loci. The WBDC was phenotyped for reaction to 40 different Bgh isolates at the seedling stage and genotyped with 10 508 molecular markers. Accessions resistant to all 40 isolates of Bgh were not found; however, three accessions (WBDC 053, 085 and 089) exhibited resistance to 38 of the isolates. Gene postulation analyses revealed that many accessions, while resistant, contained none of the 12 genes present in the Pallas near‐isogenic lines Mla1, Mla3, Mla6, Mla7, Mla9, Mla12, Mla13, Mlk1, MlLa, Mlg, Mlat and Ml(Ru2), suggesting that the accessions carry novel genes or gene combinations. A genome‐wide association study of powdery mildew resistance in the WBDC identified 21 significant marker‐trait associations that resolved into 15 quantitative trait loci. Seven of these loci have not been previously associated with powdery mildew resistance. Taken together, these results demonstrate that the WBDC is a rich source of powdery mildew resistance, and provide genetic tools for incorporating the resistance into barley breeding programmes.  相似文献   

3.
In this work, 165 Avena sativa and Avena byzantina accessions were screened for resistance to powdery mildew caused by Blumeria graminis f.sp. avenae and the defence mechanisms of resistant plants were further characterized. Ten resistant and moderately resistant accessions were selected according to macroscopic assessment. A detailed histological study of selected genotypes showed a range of defence mechanisms, acting alone or in combination, that impeded fungal development at different stages. Since the resistance observed in the collection was scarce, a study of adult plant resistance was carried out in 45 genotypes selected from field trials. Nine oat landraces and two commercial varieties showed very high levels of adult plant resistance. A detailed study of the components of the adult plant resistance revealed a high increase of penetration and post‐haustorial resistance in the fifth compared to the first leaves. Identification of the resistance sources and characterization of underlying defence mechanisms will be useful for future breeding programmes and for further cellular and molecular studies to unravel the genetic basis of resistance, in this species in particular and in cereal–powdery mildew interactions in general.  相似文献   

4.
This study was designed to assess the reliability of grapevine leaf bioassays for predicting disease resistance on fruit in the field. The efficacy of various grapevine quantitative trait loci (QTLs) for conferring resistance to downy and powdery mildew was evaluated in bioassays and in a 2‐year field experiment for downy mildew. The resistance genes studied were inherited from Muscadinia rotundifolia (Rpv1 and Run1) and from American Vitis species through cv. Regent (QTLRgP and QTLRgD). In bioassays, genotypes carrying Run1 blocked powdery mildew development at early stages. Genotypes combining Run1 with QTLRgP displayed no greater level of resistance. For downy mildew, genotypes carrying Rpv1 and/or QTLRgD were more resistant than the susceptible cv. Merlot, and showed a high level of leaf resistance in the field (<10% severity). Disease levels on bunches were much higher than those on leaves, with a high variability between Rpv1 genotypes (1–48%). A Bayesian decision theory framework predicted that an OIV‐452 threshold of 5 in leaf bioassays allowed accurate selection of grapevine genotypes (P = 0·83) with satisfactory disease severity on bunches. Therefore, this study validates that the use of early bioassays on leaves, as currently performed by grapevine breeders, ensures a satisfactory level of resistance to downy mildew of bunches in the field.  相似文献   

5.
6.
Leaves of tomato and barley were inoculated with conidia of Blumeria graminis f. sp. hordei race 1 (R1) or Oidium neolycopersici (KTP-01) to observe cytological responses in search of resistance to powdery mildew. Both conidia formed appressoria at similar rates on tomato or barley leaves, indicating that no resistance was expressed during the prepenetration stage of these fungi. On R1-inoculated tomato leaves, appressoria penetrated the papillae, but subsequent haustorium formation was inhibited by hypersensitive necrosis in the invaded epidermal cells. On the other hand, KTP-01 (pathogenic to tomato leaves) successfully developed functional haustoria in epidermal cells to elongate secondary hyphae, although the hyphal elongation from some conidia was later suppressed by delayed hypersensitive necrosis in some haustorium-harboring epidermal cells. Thus, the present study indicated that the resistance of tomato to powdery mildew fungi was associated with a hypersensitive response in invaded epidermal cells but not the prevention of fungal penetration through host papilla.  相似文献   

7.
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is one of the major constraints of pea worldwide. Its control is difficult and is mainly based on the use of resistant cultivars. This study aimed to identify and characterize resistance mechanisms interfering with Fop spore germination, as an additional pre‐penetration resistance mechanism little explored so far. For this, root exudates were collected from 12 pea accessions with differential responses to the disease, from resistant to susceptible, and their effects on Fop germination and growth were determined. While root exudates from most accessions stimulated Fop germination, the root exudates of three accessions, JI 1412, JI 2480 and P42, did not stimulate, or even inhibited, Fop germination. Although some additional compounds might be involved, the analysis showed that the most active metabolite was the pea phytoalexin pisatin. Pisatin was identified in the active fraction of pea root exudate extracts and its amount in the root exudates was negatively correlated with the extent of Fop germination. This suggests an important role of pisatin in the constitutive defence of pea against F. oxysporum.  相似文献   

8.
为明确海南省苦瓜白粉病的病原菌、生理小种及苦瓜对白粉病的抗性遗传规律,结合形态学鉴定和分子鉴定解析白粉病菌及生理小种种类,通过显微镜观察白粉病菌侵染过程,并应用主基因+多基因混合遗传模型分析法探讨苦瓜对白粉病的主要抗性遗传规律。结果表明:采集自海南省6个市(县)的苦瓜白粉病病原菌均为单囊壳白粉菌Sphaerotheca fuliginea,属生理小种2F,该菌在侵染苦瓜叶片时有4个关键时期:接种后4 h为分生孢子萌发高峰期,8 h为附着孢形成高峰期,16~24 h为次生菌丝形成高峰期,5 d为分生孢子梗形成高峰期。将其接种于苦瓜抗、感品系,对白粉病的抗性符合2对加性-显性-上位性主基因+加性-显性多基因模型,主基因和多基因共同控制苦瓜对白粉病的抗性,其中以主基因遗传为主,且会受到环境变异的影响。根据苦瓜抗性遗传规律,F2代主基因遗传率最高,受环境影响最小,在苦瓜的白粉病抗性育种中,以早期世代F2代作为有效选择世代。研究表明白粉病菌侵染叶片的前2 d是白粉病防治的最佳时期,所以在白粉病易发的物候期,可将防治时间提前1~2 d。  相似文献   

9.
Abstract

Cercospora leaf spot, caused by Cercospora canescens and powdery mildew, caused by Erysiphe polygoni are two of the most important fungal diseases of mungbeans. Nearly 4000 accessions of the global mungbean collection at the Asian Vegetable Research and Development Center were screened for resistance to these two pathogens. Less than 4% and 12% of the accessions showed resistance to Cercospora leaf spot and powdery mildew, respectively. The level of resistance to Cercospora leaf spot varied and highly resistant lines were not found. A few lines were rated highly resistant to powdery mildew over several years but others were rated moderately resistant or susceptible in other years.  相似文献   

10.
Thirty barley landraces collected from Morocco in 1985 and 1989, and held in the Polish Gene Bank, IHAR, Radzików, Poland, were screened for resistance to powdery mildew. Fifteen tested landraces (50%) showed powdery mildew resistance reactions and 24 single plant lines were selected. Eighteen lines originating from 13 landraces were tested with 17 isolates of powdery mildew and another six lines originating from six landraces were tested with 23; the isolates were chosen according to their virulence spectra observed on the ‘Pallas’ isolines differential set. Three lines (E 1090-2-2, E 1110-3-2 and E 1077-1-1) showed resistance to all powdery mildew virulence genes prevalent in Europe. In 21 lines, unknown genes alone or in combination with specific ones were detected. Five different resistance alleles(Mlat, Mlal, Mla3, Mlg andMl(CP)) were postulated to be present in the tested lines, alone or in combination:Mlat was postulated to be present in nine (~38%) lines;Mlg andMl(CP) in two lines, andMla1 andMla3 in one tested line each. The use of newly identified sources of resistance in barley breeding as a means of controlling powdery mildew is discussed.  相似文献   

11.
Lettuce (Lactuca sativa) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. Quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions were mapped in an interspecific population derived from a cross between susceptible L. sativa cultivar Salinas and the highly susceptible L. serriola accession UC96US23. Four significant QTLs were detected on linkage groups LG 1 (pm‐1.1), LG 2 (pm‐2.1 and pm‐2.2) and LG 7 (pm‐7.1), each explaining between 35 to 42% of the phenotypic variation. The four QTLs are not located in the documented hotspots of lettuce resistance genes. Alleles for the disease resistance at the four QTLs originated from both parents (two from each), demonstrating that even highly susceptible accessions may provide alleles for resistance to powdery mildew. These QTLs appeared to operate during limited periods of time. Results of the field trials with F2:3 and F3:4 families derived from a Soraya (moderately resistant) × Salinas cross demonstrated effective transfer of resistance to powdery mildew in this material. An integrated rating approach was used to estimate relative levels of resistance in 80 cultivars and accessions tested in a total of 23 field and greenhouse experiments. Generally, very low resistance was observed in crisphead‐type lettuces, while the highest relative resistance was recorded in leaf and butterhead types. Comparison of two disease assessment methods (percentage rating and the area under the disease progress steps, AUDPS) for detection of QTLs shows that the two approaches complement each other.  相似文献   

12.
为明确小豆白粉病病原菌的种类以及小豆种质资源对白粉病的抗性,采用形态学和系统发育学方法对近年来在北京市发生的小豆白粉病病原菌种类进行鉴定,并采用室内苗期人工接种法评价小豆常见栽培品种(系)对白粉病的抗性。结果表明,从北京市采集的感白粉病小豆病样中培养获得病原菌BJ1,该菌能在小豆叶片和茎上产生明显的白色粉斑,分生孢子梗直立,不分枝,分生孢子单细胞,成链状着生于分生孢子梗上,呈椭圆形或卵圆形。通过rDNA-ITS序列系统发育分析,小豆白粉病菌BJ1被鉴定为白粉菌目白粉菌科的苍耳叉丝单囊壳Podosphaera xanthii。室内苗期人工接种条件下,19个供试小豆品种(系)接种小豆白粉病菌BJ1后均可发病,其中9个审定品种均表现为中度感病或高度感病,10个优良品系发病略轻。  相似文献   

13.
To determine whether Ca2+ promotes powdery mildew penetration, Ca2+-treated barley coleoptiles were inoculated with conidia of pathogenic and nonpathogenic fungi. Penetration efficiency of the pathogenic powdery mildew Blumeria graminis was enhanced by Ca2+ treatment, but that of the necrotrophic pathogen Helminthosporium sp. remained unaffected. Similarly, when actin-dependent penetration resistance is suppressed with cytochalasin A, Ca2+ treatment specifically enhanced penetration of the nonpathogenic powdery mildew Erysiphe pisi but not that of other nonpathogens. Calmodulin inhibitors suppressed the promotive effect of Ca2+ on B. graminis penetration. These results suggest that barley powdery mildew specifically requires Ca2+ and calmodulin for penetration.  相似文献   

14.
Aegilops sharonensis (Sharon goatgrass) is a wild relative of wheat and a rich source of genetic diversity for disease resistance. The objectives of this study were to determine the genetic basis of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis and also the allelic relationships between genes controlling resistance to each disease. Progeny from crosses between resistant and susceptible accessions were evaluated for their disease reaction at the seedling and/or adult plant stage to determine the number and action of genes conferring resistance. Two different genes conferring resistance to leaf rust races THBJ and BBBB were identified in accessions 1644 and 603. For stem rust, the same single gene was found to confer resistance to race TTTT in accessions 1644 and 2229. Resistance to stem rust race TPMK was conferred by two genes in accessions 1644 and 603. A contingency test revealed no association between genes conferring resistance to leaf rust race THBJ and stem rust race TTTT or between genes conferring resistance to stem rust race TTTT and powdery mildew isolate UM06-01, indicating that the respective resistance genes are not linked. Three accessions (1644, 2229, and 1193) were found to carry a single gene for resistance to powdery mildew. Allelism tests revealed that the resistance gene in accession 1644 is different from the respective single genes present in either 2229 or 1193. The simple inheritance of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis should simplify the transfer of resistance to wheat in wide crosses.  相似文献   

15.
A spray inoculation of the first leaf of 2-leaf stage cucumber plants with a non-pathogenic isolate of Alternaria cucumarina or Cladosporium fulvum before a challenge inoculation with the pathogen Sphaerotheca fuliginea induced systemic resistance to powdery mildew on leaves 2–5. Systemic resistance was expressed by a significant (p < 0.05) reduction in the number of powdery mildew colonies produced on each leaf of the induced plants, as compared with water-sprayed plants. Systemic resistance was evident when a prior inoculation with each of the inducing fungi was administered 1, 3 or 6 days before the challenge inoculation with S. fuliginea. Increasing the inoculum concentration of A. cucumarina or C. fulvum enhanced the systemic protection and provided up to 71.6% or 80.0% reduction, respectively, in the number of colonies produced on upper leaves, relative to controls. Increasing the inoculum concentration of S. fuliginea used for challenge inoculation, increased the number of powdery mildew colonies produced on both induced and non-induced plants. Pre-treated plants, however, were still better protected than controls, indicating that the level of systemic protection was related to the S. fuliginea inoculum concentration. The induction of systemic resistance against powdery mildew by biotic agents, facilitates the development of a wide range of disease management tools.  相似文献   

16.
Powdery mildew of wheat is an important disease caused by the obligately biotrophic fungus Blumeria graminis. In compatible interactions, the powdery mildew fungus undergoes a series of developmental stages to form haustoria within host cells through which nutrients are obtained. In this study, we utilized the cDNA-AFLP technique to isolate wheat genes expressed at 5 days' post-inoculation. The expression patterns of several sequences identified in the cDNA-AFLP profiling were further investigated by Northern hybridization and RT-PCR analyses. Genes with sequence similarity to GenBank accessions AAR91119, P20076, BT009372, ABA99697, BAD81963 or AAO72574 showed greater expression in susceptible rather than resistant or mock-inoculated leaves. In addition, several sequences with similarity to CAD27894, XM_466672, AAT79487 or AAM64566 were expressed only in the compatible interactions. Possible involvement of these genes in susceptibility of host wheat upon powdery mildew infection is further discussed.  相似文献   

17.
Cashew powdery mildew is presently the most important disease of cashew trees in all Brazilian growing regions. Although it was described over a century ago, it had never threatened the Brazilian cashew industry until the first decade of the 21st century. Morphological and pathogenic evidence indicated the possibility of different pathogen species being involved in early and late types of cashew powdery mildew. This study was designed to elucidate this issue by comparing two different powdery mildew fungi occurring on cashew plants in Brazil according to the morphological characteristics, phylogenetic relationships with closely related powdery mildew fungi and pathogenic relationships. Based on morphology, molecular phylogenetics and pathogenicity on cashew, it was shown that two species of powdery mildew specimens are without question associated with cashew trees. One species, which infects young immature tissues such as shiny leaves, flowers and young fruits, is Erysiphe quercicola, while Erysiphe necator is associated exclusively with mature leaves. This is the first report of both E. quercicola and E. necator causing cashew powdery mildew, and the first detection of E. necator on cashew.  相似文献   

18.
BACKGROUND: Physcion is a key active ingredient of the ethanol extract from roots of Chinese rhubarb (Rheum officinale Baill.) that has been commercialised in China for controlling powdery mildews. The biological mechanism of action of physcion against the barley powdery mildew pathogen was studied using bioassay and microarray methods. RESULTS: Bioassay indicated that physcion did not directly affect conidial germination of Blumeria graminis Speer f. sp. hordei Marchal, but significantly inhibited conidial germination in vivo. Challenge inoculation indicated that physcion induced localised resistance rather than systemic resistance against powdery mildew. Gene expression profiling of physcion‐treated barley leaves detected four upregulated and five downregulated genes (ratio ≥ 2.0 and P‐value < 0.05) by using an Affymetrix Barley GeneChip. The five upregulated probe sequences blasted to the same barley leaf‐specific thionin gene, with significant changes varying from 4.26 to 19.91‐fold. All downregulated genes were defence‐related, linked to peroxidase, oxalate oxidase, bsi1 protein and a pathogenesis‐related protein. These changes varied from ? 2.34 to ? 2.96. Quantitative real‐time PCR data confirmed that physcion enhanced the gene expression of leaf‐specific thionin of barley. CONCLUSION: Results indicated that physcion controls powdery mildew mainly through changing the expression of defence‐related genes, and especially enhancing expression of leaf‐specific thionin in barley leaves. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Resistance to pea bacterial blight (Pseudomonas syringae pv. pisi) in different plant parts was assessed in 19 Pisum sativum cultivars and landraces, carrying race-specific resistance genes (R-genes) and two Pisum abyssinicum accessions carrying race-nonspecific resistance. Stems, leaves and pods were inoculated with seven races of P. s. pv. pisi under glasshouse conditions. For both race-specific and nonspecific resistance, a resistant response in the stem was not always associated with resistance in leaf and pod. Race-specific genes conferred stem resistance consistently, however, there was variability in the responses of leaves and pods which depended on the matching R-gene and A-gene (avirulence gene in the pathogen) combination. R2 generally conferred resistance in all plant parts. R3 or R4 singly did not confer complete resistance in leaf and pod, however, R3 in combination with R2 or R4 enhanced leaf and pod resistance. Race-nonspecific resistance conferred stem resistance to all races, leaf and pod resistance to races 2, 5 and 7 and variable reactions in leaves and pods to races 1, 3, 4 and 6.Disease expression was also studied in the field under autumn/winter conditions. P. sativum cultivar, Kelvedon Wonder (with no R genes), and two P. abyssinicum accessions, were inoculated with the most frequent races in Europe under field conditions (2, 4 and 6). Kelvedon Wonder was very susceptible to all three races, whereas P. abyssinicum was much less affected. The combination of disease resistance with frost tolerance in P. abyssinicum enabled plants to survive through the winter. A breeding strategy combining race-nonspecific resistance derived from P. abyssinicum with race-specific R-genes should provide durable resistance under severe disease pressure.  相似文献   

20.
Powdery mildew (Blumeria graminis f. sp. tritici) results in serious economic loss in wheat production. Exploration of plant resistance to wheat powdery mildew over several decades has led to the discovery of a wealth of resistance genes and quantitative trait loci (QTLs). We have provided a comprehensive summary of over 200 powdery mildew genes (permanently and temporarily designated genes) and QTLs reported in common bread wheat. This highlights the diverse and rich resistance sources that exist across all 21 chromosomes. To manage different data for breeders, here we also present a bridged mapping result from previously reported powdery mildew resistance genes and QTLs with the application of a published integrated wheat map. This will provide important insights to empower further breeding of powdery mildew resistant wheat via marker-assisted selection (MAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号