首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulating water and in the lateral part of the fish fillet. In water, concentrations up to 51 ng L−1 (GSM) and 60.3 ng L−1 (MIB) were found, while in the fillet, these were up to 9.8 ng g−1 (GSM) and 10.2 ng g−1 (MIB), decreasing with increasing number of PAA applications. PAA applications reduced the levels of off-flavor compounds, although this was insufficient to fully prevent the accumulation of GSM and MIB.  相似文献   

2.
A sustainable aquaculture production involves alternatives, as recirculating aquaculture systems (RAS), in order to increase the water supply efficiency. This paper aims: a) to propose a method for dimensioning a RAS filled and additionally supplied with water from a rainwater harvesting systems (RHS) and; b) to evaluate the efficiency of the system based on the supply of rainwater from the RHS, the quality of water in the RAS, and the development of aquatic organisms. A pilot aquaculture farm for rainbow trout (Oncorhynchus mykiss) production was designed and dimensioned. On one hand, the RAS with a configuration based on a treatment tower provided acceptable values of pH, TAN, and alkalinity. The temperature was slightly above the recommended temperature but did not negatively impact trout development. On the other hand, the water use efficiency reached 178 L/kg of fish, instead of 210,000 L/kg in an open flow system for trout rearing. The RHS fulfilled the additional required water on the test period of the pilot farm and is expected to supply at least 92% on average during the useful life. Regarding the aquatic organisms’ development, the system allowed both a better Length/ weight ratio and a lesser mortality rate compared to previous studies of RAS. In contrast to other studies in the literature, the mathematical models for dimensioning the system were calculated as a function of the final biomass expected in the tank instead of the quantity of supplied feed. Therefore, this method confirmed the applicability of this alternative criterion for designing biofilters and aquaculture systems.  相似文献   

3.
Brook trout (Salvelinus fontinalis) are a commercially important coldwater species reared in Wisconsin and the Midwestern United States. Brook trout are raised by private, tribal, state, and federal fish hatchery facilities in Wisconsin. Approximately 10% of private coldwater aquaculture operations are presently raising brook trout of various strains for stocking uses and a limited amount for food markets. Growing brook trout to a larger size, if they can be reared in a shorter time span, may present a potential new sector for the aquaculture market in the Midwestern US. The present study reports hatchery production attributes, i.e., growth, survival, fin condition, feed efficiency, water chemistry requirements and general husbandry of Lake Superior strain (Nipigon) brook trout reared in a recirculating aquaculture system (RAS), operated at an average temperature of 13 °C. The recycle system at NADF reared 1379 kg of brook trout over a 10-month period from fingerling (9 g) to market size (340–454 g). The trout grew faster (0.84 g/day and 0.64 mm/day) in the RAS than fish cultured in traditional flow-through tank culture utilizing ground water at 7.6 °C (0.14 g/day and 0.35 mm/day). Final average weight of RAS fish was 260 g, while the flow-through fish averaged 65 g. Final tank densities for the RAS averaged 40.4 kg/m3 while flow-through tanks averaged 31.2 kg/m3. Throughout the project, feed conversions in the RAS ranged from 0.9 to 1.3. Water quality variables such as TAN, nitrite, DO, temperature, TSS, CO2, ph, etc. were within safe limits for brook trout and will be discussed. It does appear from this initial research project that market size brook trout can be raised successfully in a recycle system within a similar time frame as a rainbow trout produced in a Wisconsin typical flow-through facility.  相似文献   

4.
本文介绍了虹鳟鱼在双层浮球式生物滤器封闭循环式养殖系统中的养殖试验。该养殖系统主要包括射流暴气增氧、沉淀分离和双层浮球生物过滤器过滤,过滤悬浮物能力达到90%,氨氮处理能力达到149~(gm-3.d-1)(在养殖水体15度条件下),利用臭氧催化氧化法完成杀菌、消毒及二次去除氨氮作用。在8个养殖水体为1m~3的养殖池,放养1015尾平均体重240g虹鳟鱼的循环水养殖系统中,应用动力为0.75kW、处理能力为20 T/h的BAF—20型双层浮球生物过滤设备进行循环养殖水体的处理。在养殖试验过程中,对养殖水体的pH、DO、COD、悬浮物、氨氮、亚硝酸盐、硝酸盐等水化学指标进行了监测,并对虹鳟鱼在养殖过程中不同阶段的生长情况进行了测量。结果表明,在水体循环周期为2次/h,换水周期为一次/每两周的条件下COD≤15mg/l、氨氮≤1mg/l、亚硝酸盐≤0.13mg/l、硝酸盐≤24mg/l,经对比养殖试验表明,没有循环鱼池的水体和经过浮球式生物滤器封闭循环系统的循环水体的各项指标具有明显的差别。试验表明浮球式生物滤器封闭循环水系统完全满足虹鳟鱼工厂化养殖生产的要求,确保虹鳟鱼养殖水体的水质和鱼类生长环境,达到良好养殖效果。  相似文献   

5.
Peracetic acid (PAA) is an effective disinfectant/sanitizer for certain industrial applications. PAA has been described as a powerful oxidant capable of producing water quality benefits comparable to those expected with ozone application; however, the water oxidizing capacity of PAA in aquaculture systems and its effects on fish production require further investigation, particularly within recirculation aquaculture systems (RAS). To this end, a trial was conducted using six replicated RAS; three operated with semi-continuous PAA dosing and three without PAA addition, while culturing rainbow trout Oncorhynchus mykiss. Three target PAA doses (0.05, 0.10, and 0.30 mg/L) were evaluated at approximately monthly intervals. A water recycle rate >99% was maintained and system hydraulic retention time averaged 2.7 days. Rainbow trout performance metrics including growth, survival, and feed conversion ratio were not affected by PAA dosing. Water quality was unaffected by PAA for most tested parameters. Oxidative reduction potential increased directly with PAA dose and was greater (P < 0.05) in RAS where PAA was added, indicating the potential for ORP to monitor PAA residuals. True color was lower (P < 0.05) in RAS with target PAA concentrations of 0.10 and 0.30 mg/L. Off-flavor (geosmin and 2-methylisoborneol) levels in culture water, biofilm, and trout fillets were not affected by PAA dosing under the conditions of this study. Overall, semi-continuous PAA dosing from 0.05-0.30 mg/L was compatible with rainbow trout performance and RAS operation, but did not create water quality improvements like those expected when applying low-dose ozone.  相似文献   

6.
Excessive dietary phosphorous (P) concentrations in effluents from aquaculture present a major environmental problem. We therefore studied the effect of dietary P and vitamin D3 on P utilization by rainbow trout-fed practical diets and on P concentrations in the soluble, particulate and settleable components of the effluent from fish tanks. Rainbow trout (average weight: 78 g, initial biomass: 13 kg in 0.7 m3 tanks) were fed for 11 weeks, practical diets that varied in total P, available P, and vitamin D3 concentrations. Soluble, particulate (10–200 μm) and settleable (>200 μm) P in the effluent were sampled every 0.5–6 h for 1–3 days in the third and eleventh weeks of the experiment. Trout in all diets more than doubled their weight after 11 weeks. Increasing the concentrations of available dietary P from 0.24% to 0.88% modestly enhanced growth rate. Feed conversion ratio (FCR) and biomass gain per gram P consumed decreased as dietary P concentrations increased. Carcass P, daily P gain, and plasma P concentrations were lower in fish fed with low P diets. Soluble P concentrations in the effluent peaked immediately after and again 4–6 h after feeding, and is a linear function of available dietary P. No soluble P would be produced during consumption of diets containing less than 0.22±0.02% available P. Above this dietary concentration, soluble P would be excreted at 6.9±0.4 mg/day/kg for each 0.1% increase in available dietary P. Particulate P concentrations in the effluent were independent of dietary P concentrations. Settleable, presumably fecal, P concentrations tended to increase with dietary P concentrations. In trout fed with low P (0.24% available P, 0.6% total P) diets, 60% of total dietary P were retained by the fish and the remaining 40% were excreted in the effluent as settleable P (20–30%) and particulate or soluble P (10–20%). In trout fed with high P (0.59–0.88% available P; 0.9–1.2% total P) diets, 30–55% of total dietary P was retained by fish, and the remaining 15–25% appeared in the effluent as settleable P, 20–55% as soluble P, and 5–10% as particulate P. Vitamin D3 did not affect fish growth nor effluent P levels. Physicochemical management of aquaculture effluents should consider the effect of diets on partitioning of effluent P, the peaks of soluble P concentration following feeding, and the contributions of particulate P to total P in the effluent. Increasing our understanding of how dietary P is utilized and is subsequently partitioned in the effluent can contribute significantly towards alleviating this important environmental and industry problem.  相似文献   

7.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

8.
Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The partial reuse systems were designed to increase fish production on a limited but biosecure water resource, maintain excellent water quality, and provide more optimum swimming speeds for salmonids than those provided in traditional single-pass or serial-reuse raceways. The two systems were stocked with a total of 147,840 Atlantic salmon parr in May of 2005 (mean size 89 mm and 8.5 g/fish) and operated with 87–89% water reuse on a flow basis. By the time that the smolt were removed from the systems between March 28 to April 12, 2006, the salmon smolt had reached a mean size of 24 cm and 137 g and hatchery staff considered the quality of the salmon to be exceptional. Overall feed conversion was <1:1. The Cornell-type dual-drain circular culture tanks were found to be self-cleaning and provided mean water rotational velocities that ranged from a low of 0.034 m/s (0.2 body length per second) near the center of the tank to a high of 39 cm/s (2.2 body length per second) near the perimeter of the tank. The fish swam at approximately the same speed as the water rotated. System water quality data were collected in mid-September when the systems were operated at near full loading, i.e., 24 kg/m3 maximum density and 52.1 and 44.1 kg/day of feed in system A and system B, respectively. During this evaluation, afternoon water temperatures, as well as dissolved oxygen (O2), carbon dioxide (CO2), total ammonia nitrogen (TAN), and total suspended solids (TSS) concentrations that exited the culture tank's sidewall drains averaged 14.8 and 15.9 °C, of 7.9 and 8.2 mg/L (O2), 4.0 and 3.2 mg/L (CO2), 0.72 and 0.67 mg/L (TAN), and 0.52 and 0.13 mg/L (TSS), respectively, in system A and system B. Dissolved O2 was fairly uniform across each culture tank. In addition, water temperature varied diurnally and seasonally in a distinct pattern that corresponded to water temperature fluctuations in the nearby river water, as planned. This work demonstrates that partial reuse systems are an effective alternative to traditional single-pass systems and serial-reuse raceway systems for culture of fish intended for endangered species restoration programs and supplementation programs such as salmon smolt.  相似文献   

9.
Two studies were conducted to evaluate rainbow trout Oncorhynchus mykiss health and welfare within replicated water recirculating aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and with relatively high feed loading rates. During the first study, rainbow trout cultured within WRAS operated with low water exchange (system hydraulic retention time (HRT) = 6.7 days; feed loading rate = 4.1 kg feed/m3 daily makeup flow) exhibited increased swimming speeds as well as a greater incidence of “side swimming” behavior as compared to trout cultured in high exchange WRAS (HRT = 0.67 days; feed loading rate = 0.41 kg feed/m3 daily makeup flow). During the second study, when the WRAS were operated at near-zero water exchange, an increased percentage of rainbow trout deformities, as well as increased mortality and a variety of unusual swimming behaviors were observed within WRAS with the highest feed loading rates and least water exchange (HRT ≥ 103 days; feed loading rate ≥ 71 kg feed/m3 daily makeup flow). A wide range of water quality variables were measured. Although the causative agent could not be conclusively identified, several water quality parameters, including nitrate nitrogen and dissolved potassium, were identified as being potentially associated with the observed fish health problems.  相似文献   

10.
A mathematical model is framed for a goldfish recirculating aquaculture system based on unsteady-state mass balance for prediction of the concentration of total ammonia nitrogen (TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), dissolved oxygen (DO) and total suspended solids (TSS). The goldfish were stocked at 100 numbers per m3 of rearing water volume of 5 m3 tank capacity in the years 2009 and 2010 and the model was calibrated and validated. The recirculation flow rate was fixed at 29,000 L/day. The model parameters were estimated as kTAN (mg of TAN generated per kg of feed): 20,000, M (mortality rate): 0.002 day−1, α (percentage of feed conversion to suspended solids): 23.8, koxy (mg of oxygen required for fish respiration per kg of feed applied in unit time): 300,000, kb (partial nitrification in the culture tank): 0.86 and the reaction rate constants, k1 and k2: 84.65 day−1 and 42.03 day−1 respectively and temperature growth coefficient (TGC): 5.00 × 10-5. The model efficacy was adjudged by estimation of the coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe modelling efficiency (ENS) and graphical plots between predicted and observed values.  相似文献   

11.
Aquaponics is generally regarded as a sustainable practice, but its environmental burdens were not yet deeply investigated. In this study, Life Cycle Assessment (LCA) was used to assess the environmental impacts of two hypothetical coupled aquaponics systems (CAPS): Raft System (RAFT) and Media-Filled Beds System (MFBS). Rainbow trout (Oncorhynchus mykiss) and lettuce (Lactuca sativa) were considered as cultivated species in both systems. The Simapro© software V.8.0 was used for calculation. The comparison between the two virtual systems indicated the floating technique as the less impacting one. Even though energy consumption appears to be higher in the floating system, LCA results were markedly influenced by the extensive use of inert materials in MFSB. In both systems, contribution analyses underlined that the main environmental impacts are related to infrastructures, electricity and fish feed. The LCA analyses carried out in this study highlights that the choice of less impacting materials, and the optimization of management practices, should be taken as priorities in order to reduce environmental impacts of this activity.  相似文献   

12.
Tropical and subtropical climatic conditions in India present an ideal and unique opportunity for being the leader in tropical marine finfish aquaculture. However, the problem persist due to non-availability of marine finfish seed for the culture. In response to this problem, broodstock development of different tropical marine finfishes for seed production was started. The present study was undertaken to design a recirculating aquaculture system (RAS) and studying their performance in managing the various water quality required for the marine finfish broodstock development and breeding. The design of RAS, developed in the present study, included a broodstock tank, egg collection chamber, electrical pump, rapid sand filter, venturi type protein skimmer and biological filter. Two RAS were designed, one was stocked with a demersal fish species, orange spotted grouper (Epinephelus coioides) and the other was stocked with a pelagic fish species, Indian pompano (Trachinotus mookalee) at the rate 1 and 0.5 kg/m3 with a sex ratio of 1:1 and 1:2 (female: male) respectively. Various physio-chemical parameters, viz, total ammonia nitrogen (TAN), nitrite, nitrate, pH, alkalinity, temperature, free carbon dioxide (CO2) and dissolved oxygen (DO) of both tank water were analyzed to assess the performance of recirculating aquaculture system in maintaining the water quality. Gonadal development of the fishes was assessed and the spawning performance was recorded and finally, economic performance of the system was also evaluated. During the entire experimental period, mean monthly total ammonia nitrogen was less than 0.07 and 0.06 mg L−1 and mean monthly nitrite was less than 0.02 and 0.01 mg L−1 in orange spotted grouper and Indian pompano RAS tanks respectively. The pH (7.8–8.2), DO (>4 mg/L) and alkalinity (100–120 mg/L) were found to be in optimum range in both recirculating aquaculture systems. Carbon dioxide was found to be nil during the entire experimental period in both the systems. In fact these levels were comparable or less than that is reported as the permissible limits for broodstock development. Indian pompano and Orange spotted grouper matured and spawning was obtained with production of fertilized eggs round the year. Economic evaluation showed the price of 10,000 fertilized eggs of orange spotted grouper to be US $ 1.33. The design of RAS devised in the present study is efficient in controlling and maintaining optimum water quality for broodstock development of both demersal and pelagic finfishes. The fishes stocked in RAS attained final maturation and round the year spawning was obtained.  相似文献   

13.
The development of a closed recirculating aquaculture system that does not discharge effluents would reduce a large amount of pollutant load on aquatic bodies. In this study, eel were reared in a closed recirculating system, which consisted of a rearing tank, a foam separation unit, a nitrification unit and a denitrification unit. The foam separation unit has an inhalation-type aerator and supplies air bubbles to the rearing water. The growth of eel, which were fed a commercial diet, was satisfactory, with gross weight increases of up three times in 3 months. The survival rate under the congested experimental conditions was 91%. The foam separation unit maintained oxygen saturation in the rearing water at about 80%. Furthermore, fine colloidal substances were absorbed on the stable foam formed from eel mucus and were removed from the rearing water by foam separation. Ammonia oxidation and the removal of suspended solids were accomplished rapidly and simultaneously in the nitrification unit. The ammonia concentration and turbidity were kept at less than 1.2 mg of N per litre and 2.5 units, respectively. When the denitrification process was operated, nitrate that accumulated in the rearing water (151 mg of N per litre) was reduced to 40 mg of N per litre. The sludge was easily recovered from the nitrification and denitrification tanks, and the components were found suitable as compost. Based on these results, the intensive aquaculture of freshwater fish such as eel can be achieved using a closed recirculating system without emission.  相似文献   

14.
Phosphorus removal in a marine prototype, recirculating aquaculture system   总被引:4,自引:0,他引:4  
Phosphorus dynamics were examined in a prototype, zero-discharge, marine-recirculating system. Operation of the system without discharge of water and sludge was enabled by recirculation of effluent water through two separate treatment loops. Surface water from the fish basin was pumped over a trickling filter in one loop, while bottom-water was recirculated through a sedimentation basin followed by a fluidized bed reactor in the other treatment loop. Ammonia oxidation to nitrate in the trickling filter and organic matter digestion together with nitrate reduction in the sedimentation basin and fluidized bed reactor were the main biological features of this treatment system. Orthophosphate concentrations did not exceed 15 mg PO4–P/l in the culture water during more than 1 year of system operation. Much of the phosphorus was retained within the sedimentation basin and fluidized bed reactor. In these treatment stages, the phosphorus content of organic matter was as high as 17.5% and 19%, respectively. High concentrations of total phosphorus and low concentrations of soluble orthophosphate were measured in the initial stages of sedimentation under oxic and anoxic conditions, suggesting that most of the phosphorus was associated with organic matter. Depletion of oxygen and nitrate in the sludge layers of the sedimentation basin coincided with sulfate reduction to sulfide and a release of soluble orthophosphate. The observed phosphorus dynamics in this marine system supported findings from previous studies in which it was demonstrated that denitrifiers underlie phosphorus immobilization under these conditions.  相似文献   

15.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

16.
The major objective of this study was to introduce a newly designed recirculating aquaculture system (RAS) for oyster (Crassostrea angulata) larval culture. The system includes a culture tank, a suspended circular inlet‐pipe, an upwelling aeration pipe, combined “banjo” sieves and a bioreactor chamber containing microalgae life keeping installation. The system was designed to resolve three problems: (i) stranding of larvae caused by water level changes and aeration, (ii) physical clogging of the screens and also (iii) deterioration of diet microalgae. The culture tank, “banjo” sieve size, water flow rate and light intensity for maintaining microalgae activity were all designed according to the pattern of larval movement and feeding behaviour. Results of this study showed the best average SGR for larval length was 6.36%/d (9.5 μm/d) and survival rate was 80%, with initial rearing density of 50 larvae/ml, indicating the problems above were fully resolved. Consequently, the system is fit for larval culture in mass production of oysters.  相似文献   

17.
The filter feeder sabellid Sabella spallanzanii Gmelin (Polychaeta, Sabellidae) was proposed as biofilter in the treatment of wastes from intensive aquaculture. The species was previously studied concerning reproductive traits and ecological requirements; moreover, previous laboratory experiments indicated a positive action of its feeding activity on solid removal from water column coupled with an interesting microbiological activity. In the present paper data on settlement and growth rate from a natural population, together with data on the bioremediation activity of an adult population, relative to an experiment conducted in a small fish farm are reported. Results seem to encourage further studies on S. spallanzanii for a future utilization in bioremediation of fish farms with recycled water. Data from natural annual settlement indicated, however, the unreliability in obtaining settlers from natural populations, so that the artificial reproduction of the target species will be one of the main points of further investigations.  相似文献   

18.
Onsite research indicates that activated sludge membrane biological reactors (MBRs) are an effective waste treatment technology for aquaculture effluents. MBRs produce a filtered permeate that is nearly free of dissolved nutrients, organics, and solids; therefore, this technology could be well-suited for integration within the process control loop of recirculation aquaculture systems (RAS). A four-month study was carried out to evaluate the feasibility of incorporating single-vessel MBRs within freshwater RAS while culturing rainbow trout Oncorhynchus mykiss. Triplicate RAS with and without MBRs (controls) were evaluated; mRAS and cRAS, respectively. System backwash water of mRAS was processed and retained within MBRs which allowed increased water recycling, while cRAS utilized standard dilution rates to limit nitrate accumulation. On average, mRAS required six and a half times less makeup water. Mean daily water replacement of the RAS volume for mRAS and cRAS was 1.2 ± 0.4 and 7.8 ± 0.5%, respectively (P < 0.05). A range of water quality concentrations were significantly greater in mRAS including chloride, carbon dioxide, heterotrophic bacteria count, pH, nitrate-nitrogen, total ammonia-nitrogen, total phosphorous, and true color, as well as dissolved concentrations of calcium, copper, magnesium, and sulfur. Alkalinity and ultraviolet transmittance levels were significantly lower in mRAS. These culture environment differences did not affect rainbow trout growth, feed conversion, or survival (P > 0.05). In addition, concentrations of common off-flavor compounds (geosmin and 2-methylisoborneol) in water and fish flesh were not affected by MBR presence. Improvements for future MBR integration with RAS were realized including optimization of MBR permeate rates, increased RAS water exchange through the MBRs, and infrequent supplementation of a carbon source to enhance denitrification efficiency and alkalinity recovery. Overall, incorporating MBRs within RAS resulted in substantial water savings and was biologically feasible for rainbow trout production.  相似文献   

19.
Apparent amino acid availability coefficients of several typical and novel feed ingredients were determined in rainbow trout using extruded diets and the faecal stripping technique. The ingredients were tested included five fish meals, three terrestrial animal by‐products, five plant protein concentrates, four plant meals, and seven low‐protein plant ingredients. Amino acid availability from the fish meals was relatively high ranging from 90 to 101%. Lower coefficients overall were observed for Menhaden fish meal FAQ when compared to the other fish meals. No differences in apparent amino acid availability were detected among the animal by‐products. Within the plant concentrate group, rice protein concentrate and barley protein concentrate exhibited generally lower amino acid availabilities compared to other concentrates tested. Among the plant meals, only the availabilities of histidine, valine, isoleucine and lysine in flaxseed meal were lower than those of soybean meal. Apparent amino acid availabilities among the low‐protein plant products were variable and significantly different.  相似文献   

20.
Recirculating aquaculture systems (RAS) are often designed using simplified steady-state mass balances, which fail to account for the complex dynamics that biological water treatment systems exhibit. Because of the very slow dynamics, experimental development is also difficult. We present a new, fast and robust Modelica implementation of a material balance-based dynamic simulator for fish growth, waste production and water treatment in recirculating aquaculture systems. This simulator is used together with an optimization routine based on a genetic algorithm to evaluate the performance of three different water treatment topologies, each for two fish species (Rainbow trout and Atlantic salmon) and each in both a semi-closed (no denitrification) and a fully recirculating version (with denitrification). Each case is furthermore evaluated at both saturated and supersaturated oxygen levels in the fish tank influent. The 24 cases are compared in terms of volume required to maintain an acceptable TAN concentration in the fish tank. The results indicate that the smallest volume is obtainable by introducing several bypass flows in the treatment system of a semi-closed RAS and that the gains can be significant. We also show that recycling already treated water back upstream in the treatment process degrades performance and that if one wishes to have a fully recirculating system with minimal water exchange, then the flows of oxygen, carbon and nitrogen must be carefully considered. For several of the cases, no optimum with denitrification could be found. We thus demonstrate that the best configuration and operation strategy for water treatment varies with the conditions imposed by the fish culture, illustrating the complexity of RAS plants and the importance of simulations, but also that computer-driven optimal design has the potential to increase the treatment efficiency of biofilters which could lead to cheaper plants with better water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号