首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Kaneko    N. Nagasawa    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2002,121(2):171-173
Eight plants of the putative double monosomic addition line (DMAL, 2n= 20) were developed by crossing a monosomic chromosome addition line of radish [f(A)‐type monosomic addition line (MAL) (2n= 19)] carrying the f chromosome of Brassica rapa (2n= 20, AA) with another [e(C)‐type MAL (2n= 19)] having the echromosome of Brassica oleracea (2n= 18, CC). The homoeological relationships between the two alien chromosomes were investigated by morphological, cytogenetic and random amplified polymorphic DNA (RAPD) analysis. Seventeen morphological traits that were not present in the radish cv. ‘Shogoin’ were observed in both MALs and these traits were substantially exhibited in DMAL plants. At the first metaphase of pollen mother cells (PMCs), the two parental MALs showed a chromosome configuration of 9II +1I, demonstrating impossibility of recombination between the R and the added chromosomes. The DMALs formed 10II in approximately 73% of PMCs, with one bivalent showing loose pairing between two chromosomes differing in size. In an attempt to identify the two MALs by RAPD‐specific markers using 26 selected random primers, 13 and 20 bands were specific for the f(A)‐type and the e(C)‐type MALs, respectively; 12 bands were common to both MALs (26.7%). In conclusion, the f chromosome of B. rapa is homoeologous to the e chromosome of B. oleracea. The genetic domain (genes) for 17 morphological traits are linked to each homoeologous chromosome bearing 27% of the corresponding RAPD markers.  相似文献   

2.
Y. Kaneko    H. Yano    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2003,122(3):239-243
The genetic stability and maintenance of Raphanus sativus‐Brassica rapa monosomic chromosome addition lines (a‐h‐types MALs, 2n = 19, BC2), developed by backcrossing the synthesized amphidiploid Raphanobrassica (Raphanus sativus × Brassica rapa, 2n = 38, RRAA) with R. sativus cv. ‘Shogoin’ (2n = 18, RR), was investigated. Transmission of the added alien chromosome through selected smaller seeds (SSS) and the inheritance of morphological traits and random amplified polymorphic DNA (RAPD)‐specific markers together with meiotic chromosome configuration and seed fertility were also investigated for three successive generations (BC3 to BC5). The distinctive traits and the RAPD‐specific markers of the eight types of MAL were substantially inherited and stably maintained throughout three generations, although a few variant plants (2n =18) resembling MALs (2n = 19) and hyperploidal plants (2n = 26 and 2n = 37) were generated in the earlier generations of BC3 and BC4 in comparison with BC5. The average transmission rates for three generations ranged from 26% for both the b‐type and the d‐type to 44% for the e‐type through SSS. On the other hand, the transmission rates through randomly selected seeds (RSS) were lower, ranging from 6.5% for the f‐type to 23.5% for the b‐type. In meiosis, more than 90% of PMCs showed the 9II +1I pairing configuration at metaphase I throughout three generations. For seed fertility, when backcrossed with the radish cv. ‘Shogoin’, the values were approximately 180% to 500% with the mode around 300% with the seed harvested from a pod increasing with the advancing generations. Genetic recombination between the radish chromosomes and the added chromosome is probably rare, suggesting that the added chromosome is mostly maintained unaltered in the background of the radish genome.  相似文献   

3.
Six haploid plants of radish were obtained via alien monosomic addition lines (2n = 19). One plant was derived from anther culture of an Raphanus sativus‐Brassica oleracea addition line, one plant from the selected smaller seed of an R. sativus‐Sinapis arvensis addition line and four plants from an R. sativus‐B. rapa addition line. During metaphase I of pollen mother cells, two plants exhibited the chromosome pairing of (0‐3)II+ (3‐9)I, three showed (0‐1)III + (0‐3)II + (3‐9)I and the remaining plant (0‐2)II + (5‐9)I. Trivalents seemed to be formed by the pairing between two larger chromosomes and the smaller one with somewhat loose pairing. All haploid plants were inferior to the radish cv. ‘Shogoin’ (2n = 18) with respect to vegetative growth. Their flowers were smaller, with sterile pollen grains, but a few normal flowers with fertile pollen sporadically developed and then produced a few seeds. It is suggested that the radish genome (R, n = 9) might comprise three pairs of homoeologous chromosomes, with the remaining three chromosomes carrying the homologous region(s) that results in a trivalent formation.  相似文献   

4.
Y. Kaneko    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2000,119(2):137-140
The specific monosomic addition line of radish, Raphanus sativus, carrying the e chromosome of Brassica oleracea (2n = 19, e‐type MAL) with the genetic background of the late‐bolting cv.‘Tokinashi’ was produced by successive backcrossing of the original e‐type MAL of radish that showed early bolting in the genetic background of the cv. ‘Shogoin’. The early‐bolting trait specific to the e‐type MAL was constantly expressed in the backcrossed progenies (BC2, BC3 and BC4), whereas the reverted radish‐like plants (2n =18) were gradually converted to bolting as late as ‘Tokinashi’. The added e‐chromosome expressed an epistatic effect against the genome of Japanese radish. Its early‐bolting trait was dominant to the late‐bolting trait of ‘Tokinashi’ which may be under the control of a few genes. Moreover, e‐type specific RAPD markers detected in eight primers were invariably transmitted in the backcrossed progenies by ‘Tokinashi’. From the analysis of the characteristics to the e‐type MAL and e‐type specific RAPD markers, it is suggested that the e‐added chromosome of kale (B. oleracea) was transmitted from generation to generation without any recombination with the radish chromosome. The gene(s) for the early‐bolting trait detected in this study may be useful for breeding work in radish, especially in the tropical areas.  相似文献   

5.
Intergeneric hybridization was performed between Moricandia arvensis and four inbred lines of Brassica rapa following embryo rescue. Three F1 hybrid plants were developed from three cross combinations of M. arvensis × B. rapa, and amphidiploids were synthesized by colchicine treatment. Six BC1 plants were generated from a single cross combination of amphidipolid × B. rapa ‘Ko1-303’ through embryo rescue. One BC2 and three BC3 plants were obtained from successive backcrossing with B. rapa ‘Ko1-303’ employing embryo rescue. Alloplasmic and monosomic addition lines of B. rapa (Allo-MALs, 2n = 21) were obtained from backcrossed progeny of three BC3 plants (2n = 21, 22 and 23) without embryo rescue. An alloplasmic line of B. rapa (2n = 20) degenerated before floliation on 1/2 MS medium due to severe chlorosis. Allo-MALs of B. rapa (2n = 21) showed stable male sterility without any abnormal traits in vegetative growth and female fertility. Molecular analyses revealed that the same chromosome and cytoplasm of M. arvensis had been added to each Allo-MAL of B. rapa. This Allo-MAL of B. rapa may be useful material for producing cytoplasmic male sterile lines of B. rapa.  相似文献   

6.
Two disomic barley chromosome addition lines and five translocated chromosome addition lines of common wheat cultivar Shinchunaga were isolated. They were derived from a hybrid plant between Shinchunaga and cultivated barley Nyugoruden (New Golden) by backcrossing with wheat and self pollination. Barley chromosomes added to chromosome arms involved in the translocated chromosomes were identified by C-banding method and by crossing these lines with Chinese Spring/Betzes addition lines. Two disomic addition lines were identified to have chromosome 6 and 7 of barley, respectively. Two of the five translocated chromosome addition lines were clarified to have same chromosome constitution, 42 wheat chromosomes and a pair of translocated chromosomes constituted with a long arm of chromosome 5B of wheat and a short arm of chromosome 7 of barley. The other three lines could not be identified due to chromosome rearrangement. Performances of these seven lines on agronomic characters were examined. Addition of barley chromosome 7 induced early heading, and chromosome 6 showed lated heading. Almost all of the lines except that of chromosome 6 showed short culm length and all showed reduced number of tillers, spikelets and grains per ear, and low seed fertility. These lines would be useful for genetic analyses in wheat and barley and for induction of useful genes of barley into wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A. M. Chevre    F. Eber    P. This    P. Barret    X. Tanguy    H. Brun    M. Delseny  M. Renard 《Plant Breeding》1996,115(2):113-118
Brassica napus-B. nigra addition lines were previously created using the variety ‘Darmor’ as the oilseed rape genetic background. Two isozyme loci and 46 RAPD markers were added on five different B. nigra chromosomes. The oilseed rape variety used was highly susceptible to blackleg at the cotyledon stage and only the addition of chromosome 4 gave the same level of blackleg resistance as B. nigra. This resistance was efficient whatever the isolates used. A significant effect on the development of stem canker under field conditions was observed only for the line carrying chromosome 4 which was more resistant than the susceptible control. The potential effects of two other chromosomes have to be confirmed. F1 hybrids obtained by crosses between two highly susceptible lines and the monosomic addition line carrying chromosome 4 were examined under field conditions. No effect of the oilseed rape genetic background on the expression of resistance was detected. The introduction of this resistance and mapping of the gene(s) into oilseed rape varieties are discussed.  相似文献   

8.
‘Ogura radish’, a cytoplasmic genetic male sterile line, was crossed with four local and three Japanese cultivars to identify maintainer lines. Out of seven F1 families, one cross involving a local cultivar, Aushi, produced 100% male sterile (MS) progeny. The crosses involving the other two local cultivars, Tangail Local and Kuni, produced about 90% MS progeny, indicating the presence of maintainer gene(s) for male sterility. The fourth local cultivar, Tasaki, produced 100% male fertile (MF) progeny. All three exotic cultivars appeared to possess the chromosomal gene(s) for controlling the male sterility. In BC1, BC2 and BC3 generations, segregation of MS plants were more frequent when ‘Aushi’ was used as recurrent parent. The expression of male sterility was not affected by seasonal influences. Thus the local cultivar ‘Aushi’ may be used as maintainer line for ‘Ogura radish’. To produce hybrid seed, ‘Tasaki’ can be used as pollinator line as it exhibit high heterosis with ‘Aushi’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
RAPD markers were developed for octoploid X Tritordeum (amphiploid Hordeum chilense × Triticum aestivum) and its parents. Two bread wheats, two H. chilense accessions and the two tritordeums synthesized with them were used. A total of 41 arbitrary decamer primers were tested, yielding 190 products that could be assigned to wheat, 185 to H. chilense and 108 that were nonspecific (present in wheat and barley). A total of 44 products were specific to one H. chilense line and 33 to the other 16 of the former were located on the chromosomes using a set of H. chilense in T. aestivum addition lines. The potential of RAPDs for developing addition lines or the detection of introgressions of H. chilense in bread wheat is discussed.  相似文献   

10.
Backcrossed chromosome substitution lines (CS‐B) have been developed with a homologous pair of chromosomes or chromosome arms of Gossypium barbadense (3‐79) germplasm substituted for the homologous Gossypium hirsutum(TM‐1) chromosomes or chromosome segments. We report on agronomic and fibre trait performance of four backcrossed chromosome or chromosome arm substitution lines including chromosomes 01, 11sh (chromosome 11 short arm), 12 sh and 26 Lo (chromosome 26 long arm). Data for agronomic and fibre traits were collected from replicated field experiments at two different locations in 2 years, and analysed under an additive dominance genetic model. CS‐B 12sh had higher, while CS‐B 01 and CS‐B 26Lo had lower boll weight than TM‐1. The presence of significant negative additive effects for micronaire with CS‐B 01 and significant positive additive effects for elongation and fibre strength with CS‐B 11sh suggested the substituted chromosome arms of 3‐79 in these CS‐B lines were more likely carrying genes causing these effects. Results revealed that several CS‐B lines had significant homozygous and heterozygous dominance effects for different agronomic and fibre traits suggesting that specific CS‐B lines may be useful for improving agronomic and fibre traits in hybrid cottons. These CS‐B lines also provide novel genetic resources for improving upland cotton germplasm.  相似文献   

11.
Heading time in cereals is a composite character determined by vernalization requirement, photoperiodic sensitivity and narrow-sense earliness. To study the effects of added barley chromosomes on the heading characters in wheat, two sets of wheat-barley chromosome addition lines, i.e., ‘Betzes’ barley chromosomes 2H to 7H added to ’Chinese Spring‘ wheat (CS-Be2H to CS-Be7H) and ‘New Golden’ barley chromosomes 5H and 6H added to ‘Shinchunaga’ wheat (Shi-NG5H, Shi-NG6H), were examined for their heading characters. All barley chromosomes except Be6H affected vernalization requirement and/or narrow-sense earliness in CS or Shi. Be5H chromosome also slightly increased the photoperiodic sensitivity of CS. Shi-NG5H addition line showed significantly decreased vernalization requirement in comparison with Shi, whereas CS-Be5H did not show any difference from CS. The F1 hybrid of the cross, Shi-NG5H × CS-Be5H, exhibited the same level of vernalization insensitivity as the Shi-NG5H addition line, and plants with and without a vernalization requirement segregated in a 1 : 3 ratio in the F2 generation. These observations, together with previous reports, suggest that the decreased vernalization requirement in the Shi-NG5H addition line was caused by the presence of a major dominant gene for spring habit, Sh2, located on the NG5H barley chromosome. Furthermore, this study revealed that the Sh2 gene in barley has a similar but weaker effect than the wheat vernalization insensitive gene, Vrn1, on the vernalization response in wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
B. H. Jeong    T. Saga    K. Okayasu    G. Hattori    Y. Kaneko    S. W. Bang 《Plant Breeding》2009,128(5):536-537
Intergeneric hybridization was performed between Brassica rapa and Diplotaxis tenuifolia following embryo rescue. Twenty-three F1 hybrid plants were developed from the cross B. rapa  ×  D. tenuifolia and confirmed to be amphihaploids with 21 chromosomes in mitosis. Chromosome doubling of F1 hybrids by colchicine treatment resulted into five amphidiploid plants which exhibited (20–21)II + (0–2)I at metaphase I (MI) of pollen mother cells. Sib-crossing and/or open-pollination among amphidiploid plants for more than four generations resulted in the development of an ADt-06 line with reproductive systems capable of maintaining an amphidiploid line. The ADt-06 line was intermediate in some morphological traits between two parental species, and was characterized by a slightly pungent taste as a physiological trait. Analyses for genomic DNA confirmed that this line was a hybrid between two species. This new amphidiploid ADt-06 line could be a useful genetic resource for the breeding of new leafy salad vegetables.  相似文献   

13.
萝卜-芥蓝异源四倍体的合成及GISH分析   总被引:2,自引:0,他引:2  
陈洪高  吴江生  程雨贵  刘超 《作物学报》2006,32(8):1117-1120
通过萝卜(Raphanus sativus L.,2n=18,RR)与白花芥蓝(Brassica alboglabra Bailey,2n=18, CC)杂交,F1经秋水仙碱加倍合成萝卜-芥蓝异源四倍体(Raphanobrassica, 2n=36, RRCC)。经F4~F10代连续育性选择,F10单株种子产量达32.3 g,每角粒数达14.9。基因组原位杂交显示F10减数分裂行为类似于二倍体物种,表明该异源四倍体的细胞学行为已经稳定。育性观察表明,可育花粉足够各代生产种子,但低世代杂种出现高频瘪粒种子,胚珠败孕可能是其主要原因。该萝卜-芥蓝异源四倍体可以用作向油菜(B. napus L.,2n=38,AACC)转移萝卜基因的遗传桥梁。  相似文献   

14.
S. W. Bang    K. Sugihara    B. H. Jeung    R. Kaneko    E. Satake    Y. Kaneko    Y. Matsuzawa 《Plant Breeding》2007,126(1):101-103
Intergeneric crosses were made between Brassica oleracea and Moricandia arvensis utilizing embryo rescue. Six F1 hybrid plants were generated in the cross‐combination of B. oleracea × M. arvensis from 64 pods by the placenta‐embryo culture technique, whereas three plants were produced in the reciprocal cross from 40 pods by the ovary culture technique. The hybrid plants were ascertained to be amphihaploid with 2n = 23 chromosomes in mitosis and a meiotic chromosome association of (0–3)II + (17–23)I at metaphase I (M I). In the backcross with B. oleracea, some of these hybrids developed sesquidiploid BC1 plants with 2n = 32 chromosomes that predominantly exhibited a meiotic configuration of (9II + 14I) in pollen mother cells. The following backcross of BC2 plants to B. oleracea generated 48 BC3 progeny with somatic chromosomes from 2n = 19 to 2n = 41. The 2n = 19 plants showed a chromosomal association type of (9II + 1I) and a chromosomal distribution type of (91/2 + 91/2) or (9 + 10) at M I and M II, respectively. These facts might suggest that they were monosomic addition lines (MALs) of B. oleracea carrying a single chromosome of M. arvensis that could offer potential for future genetic and breeding research, together with other novel hybrid progeny developed in this intergeneric hybridization.  相似文献   

15.
N. Arumugam    A. Mukhopadhyay    V. Gupta    Y. S. Sodhi    J. K. Verma    D. Pental  A. K. Pradhan 《Plant Breeding》2002,121(2):168-170
Brassica carinata (BBCC), a potential oilseed crop for dry land agriculture, is sensitive to high temperatures during germination and early stages of growth, which thereby restricts the possibility of using the residual soil moisture available after the rainy season for its cultivation. To overcome this problem, a three‐genome hybrid, RCBB, was synthesized using Raphanus sativus (RR) and Brassica oleracea (CC) as donor sources for the desired heat tolerance. Protoplasts of RC hybrids obtained through sexual crosses between R. sativus (female) and B. oleracea (male) were fused with protoplasts of Brassica nigra (BB) to produce RCBB somatic hybrids. The hybrid colonies regenerated with an average frequency of 7.6%. Twelve out of 36 hybrids grown to maturity were characterized for their nuclear and organelle genomes. While all the hybrids showed the presence of B. nigra chloroplasts, 10 of the hybrids showed B. nigra‐specific mitochondria and two had Raphanus‐spedfic mitochondria. The somatic hybrids could be backcrossed to B. carinata.  相似文献   

16.
Using interspecific hybridization among various Brassica species, B-genome chromosomes from different sources of Brassica, i.e. B. nigra (BB, 2n = 18), B. carinata (BBCC), 2n = 34) and B. juncea (AABB, 2n = 36) were transferred into the Canadian variety ‘Andor’ of B. napus. Monosomic addition lines were selected (AACC + 1B, 2n = 39) by cytological control. For characterization of the alien chromosomes, series of isozymes, RFLPs and RAPD markers were employed. This permitted the identification of a total of 39 lines representing seven of the eight B-genome chromosomes.  相似文献   

17.
分葱对黄瓜、萝卜和白菜的化感作用   总被引:6,自引:0,他引:6  
以黄瓜(Cucumis sativus L.),萝卜(Raphanus sativus L.)和白菜(Brassica chinensis L.)3种蔬菜作物为受体,通过种子萌发试验及幼苗生长试验,对分葱(Allium fistulosum L.var.caespitosum Makino)根系及其地上部水浸液的化感作用进行了初步研究。结果表明:分葱根系和地上部水浸液对黄瓜、萝卜和白菜具有一定的化感作用。对黄瓜和萝卜的萌发有一定的抑制作用,而对其幼苗生长有一定的促进作用;对白菜的萌发表现为低浓度促进高浓度抑制,而对其幼苗生长有一定的抑制作用。因此,在蔬菜栽培制度中,分葱可与黄瓜和萝卜进行合理的轮作与间套作;但可能不适宜与白菜进行轮作或间套作。  相似文献   

18.
S. W. Bang    Y. Kaneko  Y. Matsuzawa 《Plant Breeding》1996,115(5):385-390
Intergeneric F1 hybrids between Raphanus sativus (2n = 18, RR) and Moricandia arvensis (2n = 28, MaMa) have been produced through ovary culture followed by embryo culture, when M. arvensis was used as a pistillate parent. Six BC1 plants were also obtained through ovary culture followed by embryo culture in the backcross of an amphidiploid F1, hybrid with R. sativus cv. 'Pink ball'. Two BC1 plants were ses-quidiploids (2n = 32, MaRR), and the other BC1, plants were hyperploid with 2n = 55, having MaMaRRR genomes. BC2, seeds were obtained by conventional pollination in the successive backcross of two sesquidiploid BC1, plants with R. sativus cv. 'Pink ball'. Their seed set percentages were 12.7% and 17.0%, respectively. These novel hybrid plants and derived progenies may be valuable materials for the genetic investigation and breeding of Brassiceae , including R. sativus.  相似文献   

19.
Intergeneric hybrids involving a wild crucifer, Diplotaxis siifolia (2n = 20; DsDs), and two crop Brassica species, namely Brassica rapa (2n = 20; AA) and B. juncea (2n = 36; AABB), were developed through sequential ovary/ovule culture. Hybridization was successful only when D. siifolia was used as the female parent, indicating unilateral cross incompatibility. Hybrids were intermediate between the parents for morphological characteristics but had low male as well as female fertility. Meiotic studies of hybrids revealed partial homoeology between Ds and A/B genomes.  相似文献   

20.
D. Gao  C. Jung 《Plant Breeding》2002,121(1):81-86
Monosomic addition lines in Beta vulgaris from Beta corolliflora were described morphologically and characterized for disease resistance. Monosomic addition plants (2n= 19) were selected among segregating offspring by a squash dot technique in combination with B. corolliflora‐specific probes. Plants carrying an added chromosome were characterized by leaf shape, plant size and plant vigour. In this way, most addition lines could be distinguished from diploid beets, however, to identify those plants unequivocally, molecular marker analysis was also necessary. Transmission frequencies of each addition line were determined to be in the range 13.9% (Cor‐4) to 60% (Cor‐9). High transmission rate of addition line Cor‐9 was assumed to be due to apomictic propagation because transmission rate after selfing cannot exceed 50%. Cercospora leaf spot resistance tests were performed on 167 monosomic plants from seven different addition lines, two fragment addition lines and 89 diploid controls. No line exhibited complete resistance, but the monosomic additions Cor‐3 and Cor‐4 showed significantly lower infection rates than their diploid sibling plants. The identification of monosomic addition lines with apomictic and disease resistance characters offers the possibility of transferring those genes to sugar beet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号