首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

2.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

3.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

4.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

5.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

6.
Twenty-one dogs with confirmed tumors of the spinal cord or paraspinal tissues were imaged with magnetic resonance (MR) imaging. Anatomical location, location in relation to the dura and the medulla (spinal cord), and bone infiltration were assessed on the MR images and compared to findings at surgery or necropsy. Localization of tumors in the intradural-extramedullary compartment was not always possible. Bone infiltration was correctly assessed in all but one dog, and the anatomical locations involved were accurately determined in all dogs. Sagittal T2-weighted images were helpful to determine the anatomical location. Transverse T1-weighted images pre and post Gd-DTPA administration were helpful for additional localization and definition of tumor extension.  相似文献   

7.
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.  相似文献   

8.
9.
Pelvic limb lameness that was localized clinically to the lateral gastrocnemius head was observed in dogs without history of trauma. The aim of this retrospective study was to describe magnetic resonance imaging (MRI) findings of this condition. Nine dogs were identified, eight Border Collies and one Australian Shepherd. They all had chronic pelvic limb lameness; no signs of joint effusion or instability were present. In MR images there was high signal intensity in the lateral head of the gastrocnemius muscle around the sesamoid bone in T2‐weighted, T2*‐weighted, and STIR images and an iso‐ to mildly hyperintense signal in T1‐weighted images with marked contrast enhancement. The abnormal signal intensity most likely represents a myotendinous strain. The breed affiliation to Border Collies is striking, and a relation to biomechanical forces or motion pattern may be possible. Except for the dog with the most extensive lesion all dogs had an excellent outcome.  相似文献   

10.
The diagnosis of discospondylitis is based mainly on diagnostic imaging and laboratory results. Herein, we describe the magnetic resonance imaging (MRI) findings in 13 dogs with confirmed discospondylitis. In total there were 17 sites of discospondylitis. Eleven (81.1%) of the dogs had spinal pain for >3 weeks and a variable degree of neurologic signs. Two dogs had spinal pain and ataxia for 4 days. Radiographs were available in nine of the dogs. In MR images there was always involvement of two adjacent vertebral endplates and the associated disk. The involved endplates and adjacent marrow were T1‐hypointense with hyperintensity in short tau inversion recovery (STIR) images in all dogs, and all dogs also had contrast enhancement of endplates and paravertebral tissues. The intervertebral disks were hyperintense in T2W and STIR images and characterized by contrast enhancement in 15 sites (88.2%). Endplate erosion was present in 15 sites (88.2%) and was associated with T2‐hypointense bone marrow adjacent to it. In two sites (11.8%) endplate erosion was not MR images or radiographically. The vertebral bone marrow in these sites was T2‐hyperintense. Epidural extension was conspicuous in postcontrast images at 15 sites (88.2%). Spinal cord compression was present at 15 sites (88.2%), and all affected dogs had neurologic signs. Subluxation was present in two sites (11.8%). MRI shows characteristic features of discospondylitis, and it allows the recognition of the exact location and extension (to the epidural space and paravertebral soft tissues) of the infection. Furthermore, MRI increases lesion conspicuity in early discospondylitis that may not be visualized by radiography.  相似文献   

11.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

12.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

13.
We describe the technique for in vivo cardiac‐gated magnetic resonance imaging (MRI) in normal dogs and its application in two dogs with a large right atrial tumor. The dogs with a cardiac tumor were also imaged using contrast‐enhanced magnetic resonance angiography (CE‐MRA). Cardiac‐gated MRI and CE‐MRA are both feasible in animals with short acquisition times compatible with breath‐hold imaging under anesthesia, and provide detailed two‐ and three‐dimensional (3D) depiction of the cardiac anatomy and great vessels with or without contrast medium. Although cardiac MRI will not replace echocardiography, it is a powerful alternative technique to use when knowledge of the 3D anatomy of the vasculature is required, when precise volume measurements are needed or when myocardial characterization is indicated. As opposed to contrast‐enhanced computed tomography angiography, cardiac MRI does not use ionizing radiation or iodinated contrast medium.  相似文献   

14.
In humans, the empty sella is defined as herniation of the subarachnoidal space into the sella turcica with invisible (total empty sella) or reduced (partial empty sella) hypophyseal size. An empty sella can be associated with endocrine disturbances. The purpose of this study was to determine if the empty sella exists in dogs or cats and whether it is associated with endocrinopathy or hydrocephalus. Archived magnetic resonance images of the head of 370 dogs and 77 cats were re-evaluated specifically for the presence or absence of the pituitary gland. Hypophyseal tissue filling more than 50% of the sella was considered normal, between 30% and 50% was defined as partial empty sella and less than 30% was defined as total empty sella. In patients with an empty sella, and in all other imaged dogs of the affected breeds, the ventricle to brain ratio was measured. In patients with an empty sella, the medical record was searched for evidence of endocrinopathy. No cat had an empty sella but 11 dogs (3%) had a small or missing hypophysis. Seven of these dogs had a ventricle to brain ratio greater than 15%. Only small dogs (mean weight of 6.7 kg) were affected. One dog with an empty sella had signs of central hyperadrenocorticism while the other 10 had no sign of endocrinopathy. We conclude that the empty sella exists in dogs but is not generally associated with endocrinopathy.  相似文献   

15.
Radiography and magnetic resonance imaging were used to evaluate osteoarthritis at 2, 6, and 12 weeks following transection of the cranial cruciate ligament of the stifle (femorotibial) joint of 6 dogs. A quantitative radiographic scoring system was used to assess the progression of hard and soft tissue changes of osteoarthritis. Mediolateral (flexed joint) and oblique (extended joint) radiographic projections enabled identification of small osteophytes on the femoral trochlear ridges, which were detected at an earlier stage of development than was previously reported. Magnetic resonance imaging was useful in detecting changes in cartilage thickness, osteophytosis and intraarticular loose bodies. Radiography and magnetic resonance imaging were complementary in the assessment of pathologic changes of osteoarthritis.  相似文献   

16.
The magnetic resonance (MR) imaging features of a cerebral hemangioblastoma in a 9‐year‐old dog are described. Imaging revealed a well‐defined contrast‐enhancing lesion of the rostral forebrain that appeared extraparenchymal. Histopathology of the excised mass showed clusters of small blood vessels interspersed with interstitial cells staining positive for neuronal specific enolase, features consistent with a cerebral hemangioblastoma; the mass also appeared intraparenchymal after further immunohistochemistry study. This neoplasm should be considered a rare differential diagnosis for intracranial masses in dogs.  相似文献   

17.
Medial retropharyngeal lymph node (MRLN) mass lesions are a common cause of cranial cervical masses in dogs and cats, and are predominantly due to metastatic neoplasia, primary neoplasia, or inflammatory lymphadenitis. The purpose of this retrospective cross‐sectional study was to test the hypothesis that clinical and magnetic resonance imaging (MRI) characteristics for dogs and cats with MRLN mass lesions would differ for inflammatory vs. neoplastic etiologies. Dogs and cats with MRLN mass lesions that had undergone MRI and had a confirmed cytological or histopathological diagnosis were recruited from medical record archives. Clinical findings were recorded by one observer and MRI characteristics were recorded by two other observers who were unaware of clinical findings. A total of 31 patients were sampled, with 15 in the inflammatory lymphadenitis group and 16 in the neoplasia group. Patients with inflammatory lymphadenitis were more likely to be younger and present with lethargy (P = 0.001), pyrexia (P = 0.000), and neck pain (P = 0.006). Patients with inflammatory lymphadenitis were also more likely to have a leukocystosis (P = 0.02) and segmental neutrophilia (P = 0.001). Inflammatory masses were more likely to have moderate or marked MRI perinodal contrast enhancement (P = 0.021) and local muscle contrast enhancement (P = 0.03) whereas the neoplastic masses were more likely to have greater MRI width (P = 0.002) and height (P = 0.009). In conclusion, findings indicated that some clinical and MRI characteristics differed for dogs and cats with inflammatory vs. neoplastic medial retropharyngeal lymph node masses. Although histopathological or cytological diagnosis remains necessary for confirmation, these findings may help with the ranking of differential diagnoses of future cases.  相似文献   

18.
Reversible magnetic resonance (MR) imaging lesions have been described in humans following seizures. This condition has not yet been reported in animals. This paper describes reversible abnormalities identified in 3 dogs using MR imaging that was performed initially within 14 days of the last seizure and follow-up imaging that was performed after 10 to 16 weeks of anticonvulsant therapy. All three dogs had lesions in the piriform/temporal lobes, characterized by varying degrees of hyperintensity on T2-weighted images and hypointensity on T1-weighted images. In one dog, contrast enhancement was evident. On reevaluation, partial resolution occurred in all 3 dogs. In a fourth animal with an olfactory meningioma, similar appearing lesions in the temporal cortex and right and left piriform lobes were identified after seizure activity. A surgical biopsy of the temporal cortex and hippocampus was performed and edema, neovascularization, reactive astrocytosis, and acute neuronal necrosis were evident. These histologic findings are similar to those reported in humans with seizures. Recognizing the potential occurrence of reversible abnormalities in MR images is important in developing a diagnostic and therapeutic plan in canine patients with seizures. Repeat imaging after seizure control may help differentiate between seizure-induced changes and primary multifocal parenchymal abnormalities.  相似文献   

19.
Two dogs with neurologic signs were evaluated by magnetic resonance imaging of the brain. Focal space-occupying lesions were present in both dogs. In the first, the lesion was in the brain stem and in the second, in the cerebellum. In one dog the lesion was only evident after administration of gadolinium-DTPA-dimeglumine. Based on the magnetic resonance images, neoplasia was suspected in both dogs but histopathologically, granulomatous meningoencephalomyelitis was diagnosed.  相似文献   

20.
The magnetic resonance imaging (MRI) findings of presumed cerebrovascular accident in 12 dogs are described. Fourteen lesions were seen, commonly (11 of 14) within the gray matter of the cerebellar hemispheres or vermis. Thirteen lesions were hyperintense on T2-weighted images (in 11 dogs) and one was hypointense. Eleven of 14 lesions were within the region supplied by the rostral cerebellar artery or one of its main branches and there was no, or minimal, mass effect. Contrast enhancement was only seen in six lesions and was mild in all. Gradient-echo images provided additional information in two dogs. The appearance of infarction in dogs with diffusion-weighted images (DWI) is similar to that in humans, and provided supportive evidence for the diagnosis of infarction in five dogs. The use of gradient-echo and DWI is recommended for the evaluation of suspected cerebrovascular accidents in dogs. Six of the 12 affected animals were spaniels or spaniel crosses, suggesting a possible breed predisposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号