首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
查尔酮合成酶是植物中黄酮类物质生物合成的第一关键酶,在植物抗性生理中扮演重要作用。本研究利用RT-PCR技术从泡核桃中成功克隆获得一个受冷害诱导的查尔酮合成酶基因(Js CHS1),其基因全长1 490 bp,包含1个内含子,开放阅读框全长为1 170 bp,编码389个氨基酸,登录号为:KX657834。JSCHS1与核桃查尔酮合成酶蛋白序列同源性高达98%,而泡核桃和核桃查尔酮合成酶基因内含子DNA同源性为95%,核桃CHS内含子与泡核桃相比有8个碱基的缺失。系统进化树分析显示其与核桃形成一个独立分支。半定量PCR显示:泡核桃在常温及低温(4℃)处理后都有微弱表达,而在低温处理6 h后强烈表达,这说明Js CHS1是典型的受冷害诱导的查尔酮合成酶基因。本研究为揭示泡核桃抗寒机理以及查尔酮合成酶在冷害胁迫下的作用提供研究基础,并为利用基因工程手段培育抗寒新品种提供理论依据。  相似文献   

2.
查尔酮是植物体形成的一类次级代谢产物,在植物花色形成、育性及抵抗胁迫中发挥重要作用.前期研究发现粉葛与野葛中总黄酮的含量和葛根素的含量差异较大,而查尔酮合成酶是黄酮类化合物合成中的首个关键酶.为了研究野葛与粉葛中的查尔酮合成酶(CHS)基因是否存在差异性,利用同源克隆的方法,根据已报道的野葛(CHS基因序列设计引物,从...  相似文献   

3.
查尔酮合成酶(chalcone synthetase, CHS)是植物体内类黄酮合成途径中的关键酶,为类黄酮的合成提供了基本骨架。类黄酮不仅在逆境的抵抗、抗病害和信号传导方面扮演重要角色,在临床上还具有防癌、抗氧化、抗疟疾和抗动脉硬化等功能。本研究围绕查尔酮合成酶的结构和定位、基因结构、翻译后调控和抗病机制等几个方面,对查尔酮合成酶在植物抗病中的研究进行综述,为进一步研究查尔酮合成酶的分子调控机制和分子抗病育种提供一定的参考。  相似文献   

4.
本研究利用实时荧光定量PCR技术检测了不同盐胁迫条件下(30 mmol/L NaCl,60 mmol/L NaCl,90 mmol/L NaCl)5份黄秋葵幼苗中查尔酮合成酶基因(AeCHS)的表达模式。结果表明随着盐浓度的增加,不同耐盐性的黄秋葵幼苗中AeCHS基因的相对表达量均呈增加的趋势。同时,各处理间AeCHS基因表达水平的差异也随着盐浓度的增加逐渐增大,耐盐性强品种中(江苏杨贵妃)AeCHS基因的表达量明显高于耐性弱品种(卡里巴)。这说明黄秋葵幼苗的耐盐性可能与AeCHS基因的表达水平有关,AeCHS基因可能受盐胁迫而诱导表达。  相似文献   

5.
甘薯查尔酮合成酶基因IbCHS1的克隆和表达分析   总被引:1,自引:0,他引:1  
查尔酮合成酶(chalcone synthas,CHS)是黄酮类次生代谢物生物合成途径中的一个关键酶。为了解CHS与花青素含量的相关性,本研究根据转录组数据,利用RT-PCR技术在甘薯中克隆了一个CHS基因(Ib CHS1),并对其表达特征进行了分析。结果表明:Ib CHS1基因c DNA长1 556 bp,包含1个1 167 bp的开放阅读框,编码388个氨基酸。Ib CHS1蛋白具有典型的植物CHS结构特征,和其他植物中的类似蛋白具有很高的同源性。表达分析显示,Ib CHS1主要在紫肉甘薯中表达,其表达水平与不同品种甘薯中的花青素含量正相关。  相似文献   

6.
查尔酮合成酶(Chalcone synthase,CHS)是参与合成植物苯丙烷类物质的主要酶类之一。研究豆科植物CHS基因密码子的偏好性,对提高豆科植物CHS基因的表达水平具有重要意义。为此,运用CHIPS、CUSP和Codon W程序分析豆科植物CHS基因密码子的偏好性,并用决明CHS基因对分析结果的可信度进行验证。结果表明,在豆科植物CHS基因的密码子中,以A或U结尾的密码子偏好性较强。基于CHS基因RSCU值的聚类结果显示,豆科植物与茄科植物(包括烟草)聚为一类,表明烟草作为研究豆科植物CHS基因功能的模式植物较为合适。通过对决明CHS基因密码子偏好性与大肠杆菌和酵母基因组密码子偏好性的比较,发现两者均存在差异,但酵母的差异低于大肠杆菌,表明酵母表达系统更加适合作为决明CHS基因的外源表达系统。然而,若要使决明CHS基因能够在酵母表达系统中高效表达,仍需对其密码子进行优化。  相似文献   

7.
甘薯S-腺苷甲硫氨酸合成酶基因克隆与表达   总被引:6,自引:0,他引:6  
从实验室建立的甘薯冷胁迫抑制消减文库中分离出一cDNA片段,经NCBI比对后发现该片段与其它植物的S-腺苷甲硫氨酸合成酶基因具有90%的同源性,根据相关物种S-腺苷甲硫氨酸合成酶基因cDNA序列设计引物,以甘薯总RNA为模板,经RT-PCR扩增首次获得全长1182bp的甘薯SAMS完全编码区,NCBI比对分析结果表明:该片段与不同种属植物sams基因的编码区序列的核苷酸相似性达85.48%, 所推导的氨基酸序列相似性达93.6%。根据核苷酸序列和氨基酸序列分别构建了SAMS系统进化树,从分子水平阐明了植物种属间的亲缘进化关系,为其种质资源利用提供理论依据。利用该序列与原核表达载体pET32a连接构建融合表达载体pET-SAMS,酶切鉴定后转入大肠杆菌BL21,在不同温度下诱导3h后均表达出一63KDa大小融合蛋白。  相似文献   

8.
类黄酮(Flavonoids)是植物体内一类重要的次生代谢产物,它以结合态(黄酮苷)或自由态(黄酮苷元)形式存在于水果、蔬菜、豆类和茶叶等许多植物中,对植物的生长发育有着重要的调节作用。查尔酮合成酶(Chalcone synthase,CHS,EC2.3.1.74)是植物类黄酮合成途径的第一个关键酶,在调控类黄酮的生物合成以及类黄酮的成分起着决定作用。本研究基于番茄全基因组测序数据,利用生物信息学方法,鉴定了查尔酮合成酶基因家族成员,分析其内含子-外显子的结构特征、系统发育关系,序列结构的保守性以及染色体上的分布。研究表明:查尔酮合成酶(SlCHS)是含有8个成员的多家族基因,蛋白质序列编码位于160(SlCHS05)~438(SlCHS08)个氨基酸之间;相似性在33.7%(SlCHS02和SlCHS06)~92.0%(SlCHS04和SlCHS07)之间,表明这些序列之间具有较高的遗传多样性;此外,结构分析发现这些基因均含有较少的内含子(0~2个);序列比对表明这些基因具有较高的保守性;它们不均匀分布在番茄的1、5、6、9和12号染色体上。该研究不仅有助于未来了解该基因家族的进化起源提供参考,而且可为我们进一步分析该基因家族成员的功能奠定基础。  相似文献   

9.
本研究共收集来自于39个不同植物物种的59个查尔酮合成酶基因(CHS)序列,采用生物信息学方法对参试的CHS序列进行基因组成及结构分析,进而通过邻接法构建CHS超基因家族系统进化树。结果显示,CHS广泛分布于不同物种,整个超基因家族序列具有较高同源性;CHS超基因家族在其进化过程中分为2个亚家族,2大亚家族之间遗传距离为0.048,其进化分异程度呈保守态势。参试的所有CHS基因在其指导蛋白合成从而实现性状表达水平较为统一。  相似文献   

10.
苦荞中查尔酮合成酶基因(CHS)的克隆   总被引:1,自引:1,他引:0  
获得完整的苦荞查尔酮合成酶基因(CHS)信息并评价其进化地位,对分子辅助选育高黄酮含量的苦荞品种具有重要的指导意义。用RACE法克隆苦荞CHS基因,用生物信息学手段分析预测苦荞CHS基本理化性质和同源性,用临接法构建了该酶的系统发生树。获得1250 bp的CHS cDNA全长,含241 bp的3’UTR和185 bp的5’UTR;等电点(pI)和分子量(Mr)分别为5.33和35340.75 Da;克隆获得975 bp的开放性阅读框(ORF)。预测该基因编码含325个氨基酸残基的蛋白,氨基酸同源比对结果表明,苦荞CHS与蓼科的虎杖相似性很高;临接法构建的系统发生树结果表明,苦荞CHS与其他双子叶植物有共同的起源,与蓼科的金荞麦、甜荞、虎杖及石竹科的满天星亲缘关系较近。成功获得苦荞CHS基因的cDNA全长,克隆出完整的ORF,并确定了苦荞中该酶的进化地位和方向。  相似文献   

11.
查尔酮异构酶(CHI)是植物黄酮合成途径的关键酶,为了研究鲜切荸荠贮藏过程中表面黄化的机理,利用RACE技术对荸荠CHI基因编码区cDNA全长进行克隆,并分析其在不同组织和鲜切荸荠贮藏过程中的表达。结果表明,荸荠CHI基因(CwCHI)cDNA序列长度为1 003 bp(GeneBank:MG719238),含有一个744 bp的最大开放阅读框,其DNA包含3个内含子和4个外显子。Cw CHI可编码247个氨基酸,经预测其分子量为26.410 kD,理论等电点为4.89。Cw CHI蛋白的二级结构以α-螺旋为主,占38.06%。通过多重比对发现,CwCHI具有该家族特有的保守结构域,决定底物偏好性的第201位氨基酸为Ser,与其他Ⅰ型CHI蛋白相同。系统进化分析表明CwCHI与油棕榈和菠萝的CHI蛋白亲缘关系较近。荧光定量PCR分析表明,CwCHI基因在荸荠皮中的表达量最高,而在荸荠肉中的表达最低。鲜切荸荠黄化过程中CHI活性和CwCHI表达量快速上升,水杨酸处理抑制了CHI活性的上升和CwCHI的表达。  相似文献   

12.
小麦作物查尔酮合成酶(CHS)及其基因生物信息学分析   总被引:1,自引:1,他引:0  
对已在NCBI上注册的普通小麦、蓝粒小麦、天蓝偃麦草查尔酮合成酶(chalcone synthase,CHS)核酸和氨基酸序列进行分析。利用生物信息学软件研究3种作物查尔酮合成酶的酶学特性,对其组成成分、理化性质、亚细胞定位、跨膜结构、分子进化、蛋白质二级结构和结构域进行预测和推断。3种作物查尔酮合成酶基因长度均约为1.2 kb,编码394个氨基酸,三者氨基酸同源性很高,在蛋白质的其他预测中,发现三者均为不稳定蛋白,疏水性较强,二级结构以α-螺旋为主,但其他结构中有所差异,在进化树中可以看出蓝粒小麦与长穗偃麦草亲缘关系较近。通过分析发现,小麦类作物查尔酮合成酶有着与其他植物中该酶相同的特性,为进一步研究其他特殊的小麦类作物相关酶及其基因提供理论依据。  相似文献   

13.
海南黄灯笼椒辣椒素合成酶基因克隆及表达研究   总被引:3,自引:1,他引:2  
本研究根据csy1基因序列设计引物,从海南黄灯笼椒(C. chinense Jacq.)中克隆了类似基因片段csy-h,比对结果表明,csy1和csy-h基因与AT3基因同源性很低。Ben-Chaim等[8]证实6个不同主效QTL影响辣椒素类物含量,说明除csy1基因外,还可能存在其它基因如AT3基因影响辣椒素含量。 此外还发现辣椒果实发育中csy-h基因的表达量与CS活性大小呈相同的变化趋势,Narasimha Prasad等[2] 还发现辣椒素含量最高峰出现时间较CS活性出现时间较晚,说明CS活性可能是辣椒素含量增加的主要原因之一。此外,从来自于本研究黄灯笼椒csy-h基因片段和来自于C. chacoense、C. annuum、C. frutescens csy1基因片段同源性高达100%,而表达量不同的结果看,可能csy1基因存在转录水平的调控机制。  相似文献   

14.
根据植物查尔酮合成酶基因保守区序列设计引物,以发育18d的天然棕色棉纤维为材料,用RT-PCR结合RACE技术分离得到了一个查尔酮合成酶基因的全长cDNA(GenBank登录号:EU921263),将该基因命名为GhCHS1。实时荧光定量PCR检测显示,GhCHS1基因在棕色棉纤维细胞中优先表达,且在棕色棉纤维中的表达量远高于其近等基因系白色棉,但是该基因在绿色棉中几乎检测不到。这些试验结果暗示,该基因可能在棕色棉纤维色素形成中发挥重要作用。  相似文献   

15.
蔗糖合成酶(Sucrose Synthase,EC 2.4.1.13,Sus)在植物不同组织及不同发育阶段起不同的作用,是参与植物糖类代谢调控的关键酶之一。本研究,我们利用目前已完全确定的亚洲棉(Gossypium arboretum L.)Sus基因7个成员(Ga Sus1-Ga Sus7,Gene Bank登录号JQ995522-JQ995528)进行同源克隆并通过q RT-PCR方法对不同纤维发育时期Sus表达模式进行了检测。得到的两个组配海岛棉(Gossypium barbadense L.)重组自交系(recombinant inbred line,RIL,F2:6)亲本材料5917(高比强度品种,平均比强度48.2 c N.tex-1)和Pima-7(低比强度品种,平均比强度37.6 c N.tex-1)的Sus g DNA序列。利用生物信息学方法对基因结构特征分析比较发现,5917、Pima-7与亚洲棉Sus编码区(CDS)中分别存在(Sus1与Ga Sus1:9,8;Sus2与Ga Sus2:25,8;Sus3与Ga Sus3:8,9;Sus4与Ga Sus4:40,41;Sus5与Ga Sus5:27,27;Sus6与Ga Sus6:16,16;Sus7与Ga Sus7:7,7)处单核苷酸多态性(SNP)位点。两个海岛棉品种间Sus1,Sus2,Sus3,Sus4 CDS中存在(1,21,4,1)处差异SNP位点,Sus5,Sus6,Sus7 CDS中无差异。海岛棉Sus CDS中核酸序列碱基置换虽改变了相应氨基酸组成,但氨基酸理化性质和蛋白质结构与功能均与亚洲棉相同未发生明显变化。海岛棉纤维发育过程中,Sus在纤维中的表达具有特异性。本研究在设立高、低比强度研究对象并比对8个纤维生育时期的基础上进一步发现Sus3在纤维次生壁加厚初期(20 DPA)开始大量表达到达峰值随后下降。高比强度海岛棉品种5917 Sus1除在纤维发育起始期(0 DPA~5 DPA)大量表达外,在纤维次生壁加厚后期和末期(30 DPA~35 DPA)表达量又重新升高,低比强度海岛棉品种Pima-7 Sus1无此回升现象且表达量远低于前者。研究表明,Sus3在纤维次生壁加厚初期起作用,Sus1作用于纤维次生壁加厚后期和末期,这两个Sus在纤维次生壁加厚期发挥重要的作用,可能与纤维比强度的形成和差异有关。  相似文献   

16.
本研究的目的是克隆白花泡桐纤维素生物合成途径关键酶基因——纤维素合成酶家族基因。采用PCR和RACE技术,利用Oligo、Primer Premier 5等软件进行引物设计,从白花泡桐中克隆出纤维素合成酶基因一条,NCBI分析后,命名为PfCesA4 (NCBI登录号:MK340936)。PfCesA4基因的cDNA全长为3 735 bp,其开放阅读框(ORF)长度为3 138 bp,能够编码含有1 045个氨基酸的蛋白质,此蛋白质的相对分子质量为119 081.91 u,等电点为7.24。二级结构分析表明其以α-螺旋和无规则卷曲为主。结构域和跨膜区分析表明其在N端含有锌指结构域及2个跨膜区,在C端含有6个跨膜区,这些结构域能够表现纤维素合成酶的特征。系统进化树分析表明在所选取的物种当中,白花泡桐与芝麻的亲缘关系较近。组织特异性分析结果表明,其在茎中的表达量最高,根部次之,叶部最少;且在茎中,木质部的表达量高于韧皮部,说明其可能主要参与次生壁的建成。通过对PfCesA4基因的克隆及分析,能够为泡桐纤维素生物合成途径及后期利用分子手段对泡桐木材进行遗传改良提供基因资源。  相似文献   

17.
周向红  王萍 《作物杂志》2011,27(6):10-13
为了研究S-腺苷甲硫氨酸合成酶(S-adenosylmethionine synthetase,SAMS)在向日葵(He-lianthus annuus)抗旱和耐盐过程中的作用,先根据计算机辅助克隆结果设计引物,抽提盐胁迫向日葵叶片的总RNA,然后采用RT-PCR扩增技术克隆了向日葵的1个SAMS基因(命名为HaSAMS1),HaSAMS1基因的编码序列长1173bp,编码390个氨基酸残基。HaSAMS1没有跨膜结构域,没有信号肽,含有SAMS蛋白的特征序列。HaSAMS1与其他物种的SAMS具有较高的序列相似性,与茼蒿(Chrysanthemum coronarium)和拟南芥(Arabidopsis thaliana)等高等植物SAMS的氨基酸序列一致性介于86.8%~96.9%。HaSAMS1基因的克隆为进一步研究向日葵抗旱和耐盐机理奠定了基础。  相似文献   

18.
为进一步利用基因工程手段调控无花果乙烯的合成,以无花果果肉为材料提取基因组DNA,根据已报道的无花果ACC合成酶基因序列设计引物,采用PCR技术扩增得到一条约600 bp的特异片段,将该片段克隆到pGM-Teasy vector上经PCR、酶切和测序鉴定。序列分析结果表明,基因全长590 bp,编码196个氨基酸,该序列与GenBank上已登陆的Masui Dauphine-ACS1的cDNA序列同源性达99%,氨基酸同源性达98%。结果表明,成功克隆到了无花果ACS基因片段。  相似文献   

19.
为找到理想的工业化生产海藻糖合成酶基因工程菌,以长白山温泉SH-110基因组DNA为模板,PCR扩增编码Tres基因片段,克隆至pET-30a(+)原核表达载体,转化E.coli BL21(DE3),实验中采用IPTG和乳糖同时进行对比诱导,对表达产物进行SDS-PAGE和酶学性质研究。成功克隆了2912 bp的Tres基因,实验中发现加入IPTG和乳糖后,融合蛋白在胞内都得到了表达,而且添加乳糖诱导的蛋白表达量偏高。表达重组酶Tres相对分子量约为110 kDa,最适作用温度60℃,最适pH7.0。金属离子Ca2+、K+、Zn2+对重组酶有明显激活作用,Ba2+、Cu2+、Mn2+有明显抑制酶活作用。重组酶的动力学常数Km为8.823 mmol/L和Vmax为235.29 mmol/L。已成功在大肠杆菌表达重组Tres,为进一步研究利用基因工程菌生产大量海藻糖合成酶,进行大规模生产海藻糖提供理论依据。  相似文献   

20.
《分子植物育种》2021,19(14):4649-4656
查尔酮异构酶是调控植物花青素生成的关键酶,本研究利用PCR扩增技术从香椿叶片中克隆得到香椿查尔酮异构酶基因TsCHI。序列分析发现TsCHI基因开放阅读框全长717 bp,共编码238个氨基酸,属于亲水性、酸性蛋白。系统进化分析表明TsCHI蛋白属于TypeⅠ型CHI蛋白,与无患子目的槭树(Acer×freemanii)、橄榄(Canarium album)、龙眼(Dimocarpus longan)、柑橘(Citrus sinensis)的亲缘关系较近。实时荧光定量PCR结果表明,TsCHI在香椿幼苗茎中的表达量显著高于根与叶中的表达量,叶比根中的表达量高,但差异不显著;38℃高温胁迫、200 g/L PEG-6000溶液干旱胁迫、200 mmol/L NaCl溶液盐胁迫条件下,TsCHI基因的表达量均高于对照,且随着处理时间的延长,表达呈上升趋势。研究结果为香椿幼苗的开发利用和通过基因工程手段提高幼苗中黄酮类物质的含量提供了理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号