共查询到20条相似文献,搜索用时 15 毫秒
1.
优质水果的生产和销售离不开水果品质检测,传统的水果品质检测手段精度低、成本高、时效性差、破坏性强。近年来,随着科学技术的不断进步,低成本、高效率的水果品质无损检测技术得到飞速发展。其中,高光谱成像技术逐渐成为研究热点。综述了该技术在水果品质无损检测方面的技术原理、应用和发展现状,探讨其在水果品质无损检测领域的应用潜力、存在问题、发展趋势以及应用前景。整体来看,高光谱成像技术能够实现不同水果种类、多个水果品质指标的无损、高效检测,如成熟度、糖度、酸度、红色指数等;受硬件技术限制,其发展侧重于数据挖掘方向,即在硬件发展有限的情况下,通过不断更新和优化的针对性算法获得精准的解析结果;另一方面,设备昂贵、数据处理复杂、模型普适性较差是该技术需要进一步优化和改进的主要问题;其未来发展将基于云计算和人工智能的高效数据处理、适用范围更广的水果品质高光谱检测设备研发、多源综合无损检测等研究方向。随着技术的不断发展,高光谱成像技术在水果品质无损检测方面的应用前景广阔,未来将成为水果品质检测的重要手段之一。 相似文献
2.
3.
4.
高光谱成像技术结合成像技术和光谱技术,可以从样本中获取其空间和光谱信息。因此,高光谱成像技术能够识别和检测水果的各种化学成分及其空间分布,在水果品质的检测中备受关注。本文首先综述了高光谱成像原理及系统装置,并展开讨论了高光谱图像的校正方法、多种光谱预处理、数据降维和样本集划分方法,从定量和定性角度对模型的构建方法和性能评估进行了分析。其次,总结了高光谱成像技术在水果内部品质(可溶性固形物含量、酸度、硬度、水分含量)和外部品质(损伤、缺陷和纹理)检测和分级中的最新研究进展。最后,对高光谱成像技术在水果品质检测与分级中的应用前景提出展望,以期为优化水果品质的检测方法提供理论依据。同时,也指出了当前可能存在的挑战和局限性。 相似文献
5.
6.
南果梨是一种重要的水果品种,其酸度是评估果品质量的重要指标之一。然而,传统的南果梨酸度检测方法通常需要破坏性采样和化学分析,不仅耗时费力,而且容易导致样品污染和浪费。因此,旨在探索一种基于高光谱成像技术的无损检测方法,以实现对南果梨酸度的快速、准确、无损检测。首先,采集室温20℃下不同贮藏天数南果梨的高光谱数据,其光谱波长范围为400~1 000 nm,并且通过理化实验测量南果梨样本的可滴定酸;其次,采用多元散射校正(multipli-cative scatter correction,MSC)、标准正态变换(standard normal variate,SNV)、Savitzky-Golay平滑滤波等多种方法对光谱数据进行预处理,建立偏最小二乘回归模型(partial least squares regression,PLSR),选择出建模效果最佳的预处理方法,结果显示MSC方法效果最优;然后结合连续投影算法(successie projection algorithm,SPA)提取特征波段,在700~900 nm范围内确定9个特征光谱变量;最后,以提取出的9个特征光谱变量作为输入... 相似文献
7.
[目的]为了实现对核桃壳、仁及分心木快速、准确识别。[方法]以礼品2号核桃的核桃壳、仁及分心木为研究对象,采用高光谱成像系统采集样本的光谱信息。对所提取的光谱信息分别用一阶微分处理(1stDer),基线校正(Baseline)、标准归一化(Standard Normalized Variate,SNV)及多元散射校正(Multiplicative Scatter Correction,MSC)进行预处理并建立偏最小二乘(Partial Least Squares,PLS)模型进行判别。用竞争自适应重加权算法(Competitive Adaptive Reweighted Sampling,CARS)、回归系数法(Regression Coefficient,RC)和连续投影法(Successive Projections Algorithm,SPA)提取特征波长,建立最小二乘支持向量机(Least Squares-Support Vector Machine,LS-SVM)判别模型。[结果]建立的PLS模型表明一阶微分处理为最佳预处理。CARS提取的特征波长具有较好的预测结果。LS-SVM建模效果好,对不同特征波长提取下的核桃壳、仁及分心木的判别准确率分别达到了100%、100%、99%。[结论]用高光谱成像技术对核桃壳、仁及分心木进行分选判别是可行的,为核桃深加工和壳、仁在线分选及相关设备的开发提供理论依据。 相似文献
8.
【目的】研究应用高光谱成像技术无损检测生长发育后期苹果糖度的可行性。【方法】以生长发育后期的"富士"苹果为对象,基于采集到的波长900~1 700nm高光谱数据,建立预测苹果糖度的偏最小二乘(PLS)、支持向量机(SVM)和极限学习机(ELM)模型,并比较主成分分析(PCA)和连续投影算法(SPA)2种数据压缩或特征波提取方法对预测模型精度的影响。【结果】采用PCA方法可将全光谱压缩至9个主成分,采用SPA从全光谱的230个波长中提取出了13个特征波长,两者相比,SPA能更有效地提高模型预测能力。预测生长发育后期苹果糖度的最佳模型为基于SPA的PLS模型,其预测集相关系数为0.945,均方根误差为0.628°Brix。【结论】高光谱图像技术可以用于生长发育后期苹果糖度的无损检测,该技术的应用将有助于指导苹果的种植和适时采收。 相似文献
9.
基于高光谱成像的苹果病害无损检测方法 总被引:1,自引:0,他引:1
《沈阳农业大学学报》2016,(5)
苹果果实易发生病害,传统的苹果病害的检测不适应苹果分级在线检测的要求。为了实现病害苹果快速、有效的在线检测,采用高光谱成像技术对寒富苹果的炭疽病、苦痘病、黑腐病和褐斑病的病害果进行无损检测研究。根据正常区域与病害区域光谱相对反射率差异,提出改进流形距离方法。综合计算病害与正常区域,病害与果梗/花萼区域,正常与果梗/花萼区域的光谱相对反射率的总改进流行距离L值,从而从全波段中选择了3个特征波段,分别为700,765,904nm。对700nm特征波段下的图像进行阈值分割,以此获得掩膜图像,并对掩膜后的图像二次阈值分割提取感兴趣区域。将3个特征波段下对应的光谱相对反射率分别组合,作为BP神经网络的输入矢量,检测苹果是否为病害果。结果表明:选择700nm与904nm波段下的光谱相对反射率为最佳组合,病害果的检测率达96.25%。说明高光谱成像技术所获得的2个特征波段可以有效对苹果病害进行检测,为开发多光谱成像的苹果品质在线检测和分级系统提供参考。 相似文献
10.
水稻作为我国主要农产品之一,是我国农业经济发展的“主力军”。因此,研究水稻种子快速无损分类检测技术,对推动农业生产具有重要意义。利用高光谱仪获取450~720 nm波长范围的3类水稻种子高光谱数据,通过对比全波长的KNN模型和数据降维后的LDA-KNN算法模型,发现LDA-KNN算法模型能克服KNN模型对不相关特征的信息敏感问题,采用高光谱成像技术进行水稻种子无损分类检测具有可行性。 相似文献
11.
为了实现市场上常见红酸枝类Dalbergia spp.木材的快速无损识别,利用高光谱成像技术对不同红酸枝木材进行种类识别研究。以交趾黄檀 Dalbergia cochinchinensis,巴里黄檀 Dalbergia bariensis,奥氏黄檀Dalbergia oliveri和微凹黄檀 Dalbergia retusa为研究对象,采集高光谱图像并提取感兴趣区域内的反射光谱,采用Savitsky-Golay(SG)平滑算法、标准正态变量变换(SNV)和多元散射校正(MSC)对955~1 642 nm 波段光谱进行预处理,并通过主成分分析法(PCA),回归系数法(RC)以及连续投影法(SPA)选择特征波长,分别建立了偏最小二乘判别分析(PLS-DA)和极限学习机(ELM)判别分析模型。研究结果表明:经SG和MSC光谱预处理,采用SPA选择的特征波长建立的ELM模型性能最优,建模集和预测集的识别率均为100.0%。这为红酸枝木材种类的快速无损识别提供了新的方法。图5表4参17 相似文献
12.
为探讨基于高光谱图像技术对沙梨糖度无损检测的可行性,采集80个沙梨样本在400~1 000 nm内的高光谱图像数据及其对应的糖度,采用变量标准化、多元散射校正(MSC)、平滑滤波、基线校正等方法对原始光谱数据进行预处理,发现MSC预处理效果最佳,再通过无信息变量消除法对MSC预处理后的光谱数据进行压缩,最后分别建立BP神经网络和PLS沙梨糖度预测模型.结果表明:无信息变量消除法将光谱变量压缩到234个,有效减少了建模的输入变量,建立的PLS预测模型和BP神经网络的预测相关系数均在0.85以上,而PLS预测模型的相关系数为0.9508,均方根误差为0.268,优于BP神经网络模型. 相似文献
13.
《江苏农业科学》2016,(6)
为明确采用高光谱成像技术对葡萄可溶性固形物(SSC)检测的可行性。以高光谱成像系统为试验仪器,采集葡萄样本的漫反射光谱,对比分析不同光程校正方法、不同预处理方法对建模精度的影响,建立不同的葡萄SSC定量预测模型。研究结果表明,在波段500~1 000 nm的范围内,采用经过标准正态变化、一阶微分和Savitzky-Golay平滑相结合预处理后的偏最小二乘法建模方法预测能力最强,校正集相关系数(r_c)为0.912 6,校正集均方根误差(RMESC)为0.542,预测集相关系数(r_p)为0.854 0,预测集均方根误差(RMESP)为0.758。由结果可知,应用高光谱成像技术可以对葡萄可溶性固形物含量进行无损检测。 相似文献
14.
林乐军 《农村实用科技信息》2014,(3):43-44
这些年,随着我国的经济实力不断扩大,综合国力不断地提高,科技技术也在逐步的发展壮大当中。为了我们国家的美好建设,我国在木材政伐和木材检验的技术方面有了很大的进步。绿色环保的家园才是我们心中理想的家园.所以在木材政伐与检测方面要着重注意绿色植被的采伐,对我们国家的建设有着直接的影响。 相似文献
15.
《沈阳农业大学学报》2015,(6)
为解决玉米茎秆虫害早期无损检测问题,以提供玉米虫害预测预警与精确喷药理论依据,利用高光谱成像技术,提出了分段混合距离方法,明确玉米茎杆玉米螟虫害无损检测的最优波段,提取单波段特征图像,分割虫孔,以实现对玉米螟的快速、准确、无损检测。首先通过对玉米茎杆高光谱图像的分析,根据玉米茎杆高光谱图像的玉米茎秆区域与背景区域各个波段的光谱反射率的差异,选取450nm的图像,利用阈值分割的方法,获得掩模图像。然后根据可见光波段530~600nm范围和近红外波段750~900 nm范围光谱相关性小的特点,应用混合距离作为测量参数,筛选最佳单波段、双波段组合,最终确定754.8 nm波段为最优波段。提取该波段的图像为特征图像,采用阈值分割与数学形态学方法对玉米螟虫孔进行分割,从而检测出玉米螟虫孔区域,判定玉米茎秆是否存在虫害。结果表明:通过对测试集和验证集中60个玉米螟玉米茎杆和40个正常玉米茎杆的检测分析,得出玉米螟的检测正确率为100%,正常玉米茎的检测正确率为90%,整体检测正确率为96%。说明所获得的最优波段可为开发玉米茎虫害多光谱成像检测仪提供参考。 相似文献
16.
17.
利用荧光高光谱图像技术无损检测猕猴桃糖度 总被引:1,自引:0,他引:1
将405nm激光照射到猕猴桃样品上,当激光透过样品内部时,部分单色光被样品内部成分吸收,释放出荧光,再用高光谱成像系统采集诱导出的荧光散射图像.在荧光散射图像上选取感兴趣荧光区域(ROIs),提取感兴趣区域在波长400~1000nm范围内的特征变量.当提取12个特征变量时,建立的猕猴桃糖度多元线性回归(MLR)模型的校正集相关系数Rc为0.932,预测均方根误差(RMSEC)为0.4764°Brix,预测集相关系数Rp为0.8227,预测均方根误差(RMSEP)为0.5645°Brix.研究结果表明,采用激光诱导荧光成像技术无损检测猕猴桃糖度是可行的. 相似文献
18.
19.
《浙江大学学报(农业与生命科学版)》2020,(1)
果蔬品质是影响其市场价格和消费者满意度的重要因素之一。无损检测技术作为快速、低成本的质量评价方法,为果蔬品质检测提供了一种有效手段。本文综述了无损检测在果蔬品质检测领域中的相关应用研究,从检测原理、应用情况和技术特点3个方面对近红外光谱检测技术、机器视觉检测技术、高光谱成像检测技术、声学分析检测技术、电子鼻检测技术、介电性质分析检测技术、核磁共振检测技术等无损检测技术在果蔬品质检测中的研究情况进行总结,同时分析了各项技术目前存在的问题,并对未来的应用前景做出展望,以期为果蔬无损检测应用研究提供参考。 相似文献