首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to optimize Pecten maximus larval performance and post-larval yield, larvae were fed five algal concentrations in the range 3–20 cells μL?1 in 2,800-L flow-through tanks without prophylactic antibiotics. Competent larvae were transferred to a commercial hatchery for settlement and provided uniform conditions for 4 weeks to observe effects. Increased diet concentration increased the sum of fatty acids (FA) in the total larval population, reaching 7 and 25 ng FA larvae?1 at 3 and 16 cells μL?1, respectively. The FA level in competent larvae was not affected by diet concentration and ranged from 30 to 46 ng larvae?1. Increased diet concentration increased larval growth rate, and the larvae were ready to settle 5 days earlier when fed 16 cells μL?1 compared to 3 cells μL?1. Larval ingestion rate increased during life span and with increased larval diet concentrations, but a considerable amount (40–60 %) of the added algal cells was lost from the larval rearing tanks due to the seawater flow. There was no effect on larval survival, final post-larval shell height, % of competent larvae transferred to settlement, or total yield of post-larvae. Final mean post-larval shell height was 509 μm and 25.5 % of competent larvae settled, resulting in a final post-larval yield between 6.9 and 17.6 % of the initial number of d3 larvae. Competent larvae with similar FA content produced similar numbers of post-larvae independent of diet concentration, even if higher diet concentrations resulted in higher rates of larval development and metamorphosis.  相似文献   

2.
This study aimed to model the food intake of P. margaritifera to examine the relationship between food level and reproductive activity. The effect of microalgae concentration on ingestion rate and assimilation efficiency was studied over a broad concentration range, using a mixture of Isochrysis galbana and Chaetoceros gracilis. Reproductive effort was assessed using three microalgae concentrations of 0.5, 7 and 18 cell μL?1. Reproductive status was assessed by gonad development index (GDI) – the ratio of the gonad surface to the visceral mass surface – and histological analysis of the gonad based on the presence (continuous or discontinuous) or the absence of gonial cells (GC). Ingestion is a saturating function of seston concentration for bivalves modelled with an adapted Michaelis‐Menten function. The maximum ingestion rate of P. margaritifera adults was 193.50 × 106 cell h?1 g?1 dw and the half saturation coefficient was 15 cell μL?1. The concentration of 18 cell μL?1, supplied for 45 days, induced a significantly higher GDI than the other treatments. GC decreased significantly and even stopped when pearl oysters were under‐fed, suggesting that the mitotic process of the germinal stem cells was altered. Differentiation of germinal stem cells therefore appears to be controlled by food availability.  相似文献   

3.
Under controlled conditions of food density and temperature, larval performances (ingestion, growth, survival and settlement success) of the flat oyster, Ostrea edulis, were investigated using a flow‐through rearing system. In the first experiment, oyster larvae were reared at five different phytoplankton densities (70, 500, 1500, 2500 and 3500 μm3 μL?1: ≈1, 8, 25, 42 and 58 cells μL?1 equivalent TCg), and in the second, larvae were grown at four different temperatures (15, 20, 25 and 30°C). Overall, larvae survived a wide range of food density and temperature, with high survival recorded at the end of the experiments. Microalgae concentration and temperature both impacted significantly larval development and settlement success. A mixed diet of Chaetoceros neogracile and Tisochrysis lutea (1:1 cell volume) maintained throughout the whole larval life at a concentration of 1500 μm3 μL?1 allowed the best larval development of O. edulis at 25°C with high survival (98%), good growth (16 μm day?1) and high settlement success (68%). In addition, optimum larval development (survival ≥97%; growth ≥17 μm day?1) and settlement (≥78%) were achieved at 25 and 30°C, at microalgae concentrations of 1500 μm3 μL?1. In contrast, temperature of 20°C led to lower development (≤10 μm day?1) and weaker settlement (≤27%), whereas at 15°C, no settlement occurred. The design experiments allowed the estimation of the maximum surface‐area‐specific ingestion rate  = 120 ± 4 μm3 day?1 μm?2, the half saturation coefficient {XK} = 537 ± 142 μm3 μL?1 and the Arrhenius temperature TA = 8355 K. This contribution put a tangible basis for a future O. edulis Dynamic Energy Budget (DEB) larval growth model.  相似文献   

4.
The effects of salinity fluctuation on the growth, intermoult period and energy budget of juvenile Litopenaeus vannamei were investigated. Salinity fluctuation regimes were set in different frequencies of 2, 4 and 8 days and different amplitudes of ±2, ±5 and ±10 g L?1 from a control salinity of 20 g L?1. After a 48‐day feeding trial, the intermoult period of shrimp became shorter with increasing amplitude and frequency of salinity fluctuation (P<0.05). Both the frequency and the amplitude of salinity fluctuation had a significant effect on the growth rate of L. vannamei juveniles (P<0.05). At the frequency of 4 days, the highest growth rates occurred at amplitudes of 5–10 g L?1, whereas the growth rate was the lowest at 10 g L?1 when the frequency was reduced to 2 days. Feed intake (FI) and assimilation efficiency (AE) of shrimp were also significantly affected by the salinity fluctuation (P<0.05) and matched the growth rate response. The energy expenditures for growth (G), respiration (R), excretion (U) and exuviae (E) to the energy consumed as food (C) were not affected by salinity fluctuation. However, salinity fluctuation significantly affected the percentage of C as faeces (F), with the lowest value occurring at salinity amplitudes of 5–10 g L?1 and frequencies of 4–8 days. Therefore, salinity fluctuations (every 4 days by ±5–10 g L?1) result in higher growth rates than constant salinity conditions (20 g L?1) through greater FI, enhanced feed assimilation and reduced faecal energy loss.  相似文献   

5.
Gastrointestinal and serum absorption of astaxanthin was studied in rainbow trout, Oncorhynchus mykiss (Walbaum) (217 ± 2 g) fed diets supplemented with either esterified astaxanthin (from Haematococcus pluvialis) or free astaxanthin (synthetic, as 8% w/w beadlets) at similar levels (50 mg kg?1). After 56 days of feeding, there was a significant difference (P = 0.0582) between steady‐state serum astaxanthin concentrations for fish fed free (2.0 ± 0.3 μg mL?1) or esterified astaxanthin (1.3 ± 0.1 μg mL?1) at the 90% confidence level. However, following ingestion of a single meal supplemented with free or esterified astaxanthin, the rates of astaxanthin absorption into serum were not significantly different (P > 0.1) (0.8 ± 0.2 µg mL?1 h?1 and 1.0 ± 0.4 µg mL?1 h?1 respectively). In fish fed both free or esterified astaxanthin, higher absorption (P < 0.05) of astaxanthin by the ileal (0.8 ± 0.14 μg g?1 and 0.9 ± 0.15 μg g?1 respectively) compared with the posterior (0.2 ± 0.01 μg g?1 and 0.3 ± 0.14 μg g?1 respectively) intestine was recorded. This confirmed the role of the anterior intestine in carotenoid absorption. Non‐detectable levels of esters in digesta taken from the hind intestine suggest the anterior intestine is also the primary region for ester hydrolysis.  相似文献   

6.
The nitrite threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. African catfish with an initial mean (SD) weight of 219.7 (57.8) g were exposed to an increasing range of water nitrite from 6 (Control) to 928 μM nitrite for 28 days. Mean (SD) plasma nitrite concentrations increased from 5.0 (3.6) to 32.5 (12.6) μM at 928 μM ambient nitrite. The increase in nitrite was accompanied by gradual increase in plasma nitrate from 41.6 (28.4) μM to 420.2 (106.4) μM. Haematocrit, haemoglobin, methemoglobin, plasma concentrations of cortisol, glucose, lactate, osmolality, gill morphology and branchial Na+/K+‐ATPase activity were not affected. Feed intake, final weight, SGR, FCR and mortality were not affected. We advise not to exceed a water nitrite concentration of 43 μM (0.6 mg L?1 NO2?‐N) to prevent the risk of reduced growth and feed intake in African catfish aquaculture.  相似文献   

7.
The effects of the density and type of food on oxygen consumption and ingestion rate of larvae of the white shrimp Penaeus setiferus fed diatoms Chaetoceros ceratosporum, flagellates Tetraselmis chuii and Artemia franciscana nauplii were analysed. Diatoms, flagellates and Artemia nauplii were fed at five densities from 10 to 5 × 103 cells mL?1, 0 to 4 × 103 cells mL?1, and 0.1, 0.5, 1.0, 1.5 and 2 nauplii mL?1, respectively. In three experiments, two of three types of food were maintained constant at concentrations of 30-40 × 103 cells mL?1 (diatoms), 2 × 103 cells mL?1 (flagellates) and 1 Artemia nauplii mL?1. The oxygen consumption in three experiments increased with larval stage, reaching maximum values in Mill except at lower feed concentrations. A maximum ingestion peak in MI was recorded in larvae fed diatoms, whereas that peak was observed in Mil in larvae fed flagellates. The maximum ingestion rate of Artemia nauplii was observed in Mill. Feed concentrations that produced an optimum metabolic rate as a consequence of equilibrium between ingested food and larval stages were obtained with 20 and 30 × 103 cells mL?1 of C. ceratosporum, 2 and 3 × 103 cells mL?1 of T. chuii, and 1.0 Artemia nauplii mL?1. These concentrations would be the most suitable for producing P. setiferus postlarvae.  相似文献   

8.
The effects of ammonia and nitrite on survival, growth and moulting were investigated in juvenile tiger crab, Orithyia sinica (carapace length 3.91±0.15 mm, carapace width 3.84±0.23 mm, n=440), after 30 days exposure to ammonia‐N (0, 20, 50, 100 and 150 mg L?1) and nitrite‐N (0, 50, 100, 150, 200 and 250 mg L?1) using a continuous flow system. Survival rates of tiger crab exposed to ammonia and nitrite decreased linearly with the exposure time and concentration. The growth rate of tiger crab exposed to 50, 100 and 150 mg L?1 ammonia was significantly lower than that of control crabs. The growth rate of tiger crab exposed to nitrite decreased at 150, 200 and 250 mg L?1 nitrite. During the ammonia and nitrite exposure, the intermoult period of the juveniles of tiger crab O. sinica was shortened between the first and second moult, and the number of moulting of crabs exposed to a higher concentration were significantly higher than that of control crabs.  相似文献   

9.
Abstract The effect of water oxygen content on growth and food conversion efficiency was evaluated for juvenile spotted wolffish, mean (± SD) initial weight 68.5 (± 17.5) g, reared at oxygen levels of 4.0, 6.0 (hypoxia), 9.6 (normoxia) and 14.5 (hyperoxia) mg L?1 for 11 weeks at 8 °C. Mean weights and total food consumption were significantly higher in the control and hyperoxic groups compared with the hypoxic groups at the end of the experiment. The 9.6 and 14.5 mg L?1 groups exhibited significantly higher overall specific growth rates (0.90 and 0.86% day?1 respectively) compared with the groups on 4.0 and 6.0 mg L?1 (0.46 and 0.71% day?1 respectively). In the hyperoxic group, growth was only limited in the first period and, in the hypoxic groups, growth rates increased throughout the experiment, with the 6.0 mg L?1 group performing equally well compared with the control in the last period. Overall, our findings suggest that the species will adapt to both high and low ambient water oxygen content given a period of adaptation. After the adaptation phase, growth and food conversion efficiency are comparable in the oxygen level range of 6.0–14.5 mg L?1.  相似文献   

10.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

11.
A series of four trials were conducted on inland saline groundwater of 58 g L?1 diluted to lower salinities up to 10 g L?1 and later manipulating its ionic concentrations to enhance the survival and growth of Penaeus monodon postlarvae (PL). In the first experiment, the survival of PL was tested at several salinities (10, 20, 30, 40, 50 and 58 g L?1), and the survival of PL was studied in comparison with natural sea water of similar salinities. Complete mortality of PL was observed at all salinity levels within 144 h. Longest survival for 96 h followed by 72 h was found at 10 and 20 g L?1 salinity respectively. In the second experiment, survival of PL was tested at 10–20 g L?1 salinity at different concentrations of calcium varying between 100 and 300 mg L?1. The survival of PL could be increased to 7 days at 12.5 g L?1 salinity by reducing the calcium level to 200 from 921.8 mg L?1 with magnesium and potassium levels of 208.5 and 30.03 mg L?1 respectively. In the third experiment, the survival of PL could be further enhanced to 18 days at the same salinity by increasing the magnesium level from 208.5 to 400 mg L?1 with potassium held at 30.03 mg L?1. Survival and growth of PL in inland saline water of 12.5 g L?1 salinity similar to performance in sea water of the same salinity was achieved by increasing the potassium concentration from 30.03 to 200 mg L?1 with calcium and magnesium levels of 199.5 and 199.4 mg L?1 respectively.  相似文献   

12.
Independent and combined effects of stocking density and algal concentration on the survival, growth and metamorphosis of the Bobu Ivory shell Babylonia formosae habei larvae were assessed using a 5 × 5 factorial design with densities of 0.25, 0.5, 0.75, 1.00 and 1.50 larvae mL−1 and algal concentrations of 5, 10, 15, 20 and 25 × 104 cells mL−1 in the laboratory. Larval growth, survival and metamorphosis were significantly affected by both the independent effects of stocking density and algal concentration and by their interaction. The highest per cent survival (72.5%) and metamorphosis (49.5%), fastest growth (41.57 μm day−1) and shortest time to initial metamorphosis (10 days) all occurred at the lowest stocking density and the highest algal concentration. Both crowding and food limitation had independently negative impacts on the survival, growth and metamorphosis of larvae, and these negative impacts were further strengthened by the interaction of a higher stocking density and a lower algal concentration. Moreover, the results suggest that stocking density and algal concentration obviously played different roles in determining larval survival and growth. To maximize survival and growth, B. formosae habei larvae should be reared at a lower stoking density of 0.25 larvae mL−1 and fed a higher algal concentration of 25 × 104 cells mL−1 in large-scale hatchery seed culture.  相似文献   

13.
The freshwater mussel Elliptio complanata was provided green algal‐dominated water from a Partitioned Aquaculture System (PAS) over a range of water temperatures (6.1–32.4 °C) and suspended particulate organic carbon (POC) concentrations (<1–32.2 mg C L?1) to determine filtration rates as mg POC kg?1 wet tissue weight h?1. The lowest filtration rates were observed at lowest temperatures and POC concentrations while the highest rates were at intermediate temperatures and the highest POC levels. The predicted filtration rate (PFR) in response to water temperature and POC concentrations was as follows: ln PFR=1.4352+0.1192 POC+0.1399 T?0.0001 T3. Within the experimental conditions, PFRs at any POC concentration increased with increased water temperature to a peak at 22 °C and then decreased. The maximum PFR occurred at 22 °C and 32 mg C L?1 and the minimum PFR at 7 °C and 1 mg C L?1. A model to describe the mussel filtration rate responses to PAS water conditions involves both water temperature and POC concentration.  相似文献   

14.
In this study, we analysed the effect of population density and food concentration on the fecundity of a Mediterranean strain of Acartia tonsa to maximize egg production. During 4‐day feeding experiments, egg hatching success and faecal pellet production were also followed. The algae Rhinomonas reticulata was supplied at different concentrations corresponding to 250, 500, 1000, 1500, 2000 and 3000 μg C L?1 day?1 at the following adult copepod density: 40, 80 and 160 ind. L?1. Our results show a positive relationship between algal concentration and egg production under all experimental conditions confirming that the quantity of food strongly limits A. tonsa fecundity. Maximum egg production (57 eggs per female) was reached at the lowest density and at the maximum food concentration. Percentage of egg hatching success was not dependent on the quantity of food used. At the same food concentration, an increase in population density from 40 to 80 ind. L?1 induced an increase in faecal pellet production per couple which did not correspond to an increase in egg production, suggesting that higher energetic costs were shifted to swimming activity. Productivity of the A. tonsa Mediterranean strain is mainly limited by the quantity of food rather than by crowding conditions.  相似文献   

15.
The feeding behavior of Mytilus edulis platensis, one of the most important aquaculture resources on the East Coast of southern South America, was studied by analyzing clearance rate (CR) and ingestion rate (IR) to test the hypothesis that cultivated mussels can attain higher clearance and ingestion rates than their wild counterparts. A number of morphometric relationships between cultivated and wild mussels were also compared. Gill surface (GS) growth relative to length (L) is isometric in M. e. platensis, with no significant differences between wild and cultivated mussels. At low food concentrations (<15 Chaetoceros gracilis cells μl−1), the CR is maximum and similar in both cultivated and wild mussels, decreasing when the concentration of experimental food surpasses a threshold level. This concentration threshold is higher in cultivated mussels than in wild ones. While culture conditions do not affect either GS growth or potential CR, they do affect CR regulation patterns in response to fluctuations in food concentration, allowing the attainment of higher maximum IR.  相似文献   

16.
Galaxias maculatus is an osmeriform native fish of the Southern Hemisphere, in which the crystalline larvae is considered as a luxury delicacy, for this reason, it has been commercially exploited in Chile, Argentina and New Zealand. However, the fisheries have been rapidly decreasing due to the overexploitation and the predation of introduced species. Because of these events, there is a need to determine a carrying capacity for an intensive fish culture. In order to optimize stocking densities for fish culture, this paper proposes objectives to determine oxygen consumption (OC) rates, dissolved oxygen concentrations that produce signs of hypoxia and the average time elapsed between food intake and peak OC in G. maculatus. In the oxygen experiments under routine metabolism conditions, we found that G. maculatus adults and whitebait showed signs of asphyxia at dissolved oxygen concentrations between 1.3 and 2.2 mg L?1 and that adults tolerated dissolved oxygen levels as low as 1.3 mg L?1. The results showed that G. maculatus individuals with an average weight of 0.04 g consumed 0.048 mg O2 h?1, whereas individuals with an average weight of 1.4 g consumed 0.345 mg O2 h?1. Galaxias maculatus increased the OC rate by 31%, from 0.39 to 0.51 mg O2 h?1 g?1, occurring 14 min after food intake. The carrying capacities for industrial cultures of G. maculatus, were estimated using an allometric equation (OC=0.2363 ×W 0.612 ), a water flow rate of 1 m3 h?1 and an input oxygen concentration of 10 mg L?1 at 12 °C. The density culture of whitebait (4 g) can be allowed to reach 8–11 kg m?3; therefore, these stocking densities reduce the risk of hypoxia and mortality, ensuring the appropriate growth and feed conversion rates.  相似文献   

17.
In the present study, we investigate the short‐term adaptive physiological strategies to polycyclic aromatic hydrocarbon (PAH) of Pacific oysters, Crassostrea gigas, by exposing the oysters to varying levels of PAH (0, 50, 100 and 200 μg L−1) for 7 days with a 3‐day acclimation period under laboratory conditions. The filtration rate (FR) and respiration rate (R) increased significantly at 50 μg L−1 PAH and decreased at 100 and 200 μg L−1 compared with the control. The absorption efficiency (Abs. eff.) was significantly impaired at 200 μg L−1 PAH. Ammonia excretion (E) increased with increasing PAH levels, with a significant elevation at 200 μg L−1. Although a significantly elevated FR was observed, oysters exposed to 50 μg L−1 PAH showed scope for growth (SFG) similar to the control. This indicates that even at nominal levels, PAH contamination is a possible cause of reduced oyster production because of increased food demand. The oysters exposed to 200 μg L−1 PAH showed negative SFG values, which could be a possible cause of growth stagnation or even mortality when the exposure is chronic.  相似文献   

18.
By introducing recirculation aquaculture systems (RAS) in the nursery phase of the blue mussel (Mytilus edulis) (17–18 mm), we aimed at a similar growth and survival and a similar water quality compared to the commonly used flow‐through systems (FTS). To calculate water flow and size of the biofilter, a series of experiments were done to determine clearance rate (9.26 mL min?1), pseudo faeces threshold (60 000 cells Pavlova lutheri mL?1), nitrogen production (0.00065 mg TAN h?1 ind?1 and 1.6 × 10?5 mg NO2–N h?1 ind?1) and oxygen consumption (0.03 ± 0.01 mg O2 h?1 ind?1). RAS showed no significant differences in water quality (0.06 mg TAN L?1; 7.7 mg O2 L?1) and growth performance of mussel seed specific growth rate (SGR = 5% day?1) after the experimental period of 4 weeks compared with FTS. The low water refreshment, 10% per day, as well as the constant chlorophyll concentrations (9.76 ± 1.06 μg L?1), suggests the potential of RAS as culture system for mussel seed.  相似文献   

19.
Several experiments were performed examining the effect of different culture variables on the growth and survival of Argopecten nucleus and Nodipecten nodosus larvae. Higher growth and survival values were obtained at a low density (1 larvae mL?1) than at a high density (5 larvae mL?1), except for N. nodosus's survival, which was not affected by density. Higher growth was obtained when feeding the larvae a diet of Isochrysis galbana, similar results occurred with the diet of Isochrysis galbana+Chaetoceros calcitrans in A. nucleus and with I. galbana combined with the lipid emulsion EmDHA in N. nodosus. Higher survival was obtained when the diet included a mixture of microalgae than when EmDHA was supplemented. Growth and survival of the larvae of A. nucleus were greater when fed continuously, while N. nodosus grew and survived better when food was given discontinuously. Higher growth and survival values were recorded at lower food concentrations ranging from 20 to 40 cells μL?1 of I. galbana. Higher growth was observed with increasing temperature between 22 and 28 °C, although there was a simultaneous decrease in survival. No significant effects on larval production parameters were found when the culture water was changed totally or partially, but higher larval growth of N. nodosus was verified when a partial renewal of water was performed.  相似文献   

20.
Survival, growth and proximal body composition of juvenile Farfantepenaeus californiensis (Holmes) were examined at two dissolved oxygen concentrations (mean 5.8 and 2.6 mg L?1) and three temperatures (19 °C, 23 °C and 27 °C) for 50 days. Three replicate experiments were performed with a 12 h light/dark photoperiod. Survival was 68–85% at the lower dissolved oxygen level and 77–82% at the higher level and was not significantly affected by the treatments (P > 0.01). Growth at the lower oxygen concentration was significantly less (P < 0.01) than at the higher concentration, with growth rates of 2, 12 and 24 mg day?1 from the lowest to the highest temperature and 4, 17 and 26 mg day?1 for the three temperatures at the higher dissolved oxygen level. Body lipids were 1.2% wt/wt at the higher temperature and 2.1% wt/wt at the lower temperature, while proteins were 15.1% wt/wt at the higher temperature and 12.5% wt/wt at the lower temperature. These results indicate that low oxygen levels and low temperature significantly depress growth at this particular stage of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号