首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Critical loads of acid deposition are exceeded in parts of the Southern Uplands of Scotland where base saturation in the topmost mineral horizons in many soils developed on greywackes and shales is <10%. Long-term weathering rates calculated by the elemental depletion method from nine soil profiles across a 200 km transect indicate losses of base cations in the range 4–31 meq m?2a?1. In every profile the most depleted base cation is Mg which is directly related to the weathering of chlorite which is often present at the 20–40% level in basal horizons but is often completely weathered out in E horizons. The second most depleted base cation is usually K, and this is clearly related to the weathering of mica to a vermiculitic mineral which, in the clay fractions, contains polymeric hydroxyaluminium in the interlamellar space if the soil pH is >4.3. The base cation least depleted is Ca and this is in sharp contrast to current weathering rates calculated from input-output budgets where Ca is the main base cation being exported. This discrepancy may be due to a contribution to the output from easily soluble Ca-bearing minerals (e.g. calcite) in narrow veins and fractures in the bedrock.  相似文献   

2.
The sensitivity of catchments to acidification is often assessed by calculation of weathering rates for comparison of the rates of release of base cations with the measured acidic inputs. Methods of calculation of weathering rates include (1) long-term rates from elemental depletion in soil profiles; (2) current rates from input-output budgets; (3) strontium isotope ratios to modify current rates for calcium; (4) modelling using PROFILE or MAGIC; (5) laboratory experimental methods. Not all these methods can be applied in any one situation and when more than one method can be used, there are often discrepancies in the resulting figures. Comparison of long-term and current rates with acidic inputs are often consistent with the known acidification status of some Scottish catchments, but in others it is often difficult to establish a relationship. In some catchments where acidification only occurs under high-flow conditions, for example, long-term rates (12–24 meq m?2a?1) are an order of magnitude lower than current rates (185–340 meq m?2a?1). In seven Scottish catchments on four rock types, weathering rates calculated by PROFILE are of the same order of magnitude as long-term rates calculated for the same soil profiles. Current rates, on the other hand, are always higher than the long-term rates, sometimes by a factor as high as 22, and although this could indicate that release of base cations from these soils has increased in recent times, possibly due to anthropogenic inputs, the comparisons may not be valid.  相似文献   

3.
The majority of Scottish upland soils are particularly sensitive to acid deposition because of their low weathering rates. The compositions of the exchangeable base cations of such soils in the United Kingdom are dominated by sea salt inputs rather than by mineral weathering inputs of base cations. Catchments with low mineral weathering rates are also those particularly susceptible to freshwater acidification. Therefore, catchments exhibiting a high sea salt effect should also exhibit the most acid waters under base flow and storm flow conditions. A field evaluation study based on 61 catchments in NE Scotland has shown that this is indeed the case. River water pH under both base flow and high flow conditions is correlated stronhly with the relative contribution of Na+ to the sum of Ca2+, Mg2+ and Na+. From these results, an attempt is being made to produce a quantitative signature of weathering for the soils within the catchment upstream of the sampling point. Representative soil samples from the LFH, AE, B and C horizons and on 4 different parent materials have been obtained from the surrounding catchments to validate the above results for associated soil solutions. Sampling took place on upland moorland podzols under Calluna vulgaris. Tension lysimeters were used to sample the soil solutions so that their chemistry could be compared with that of the relevant river water.  相似文献   

4.
The mobility of major cations (H+, ammonium, Al, Ca, Na, Mg, K, Fe), heavy metals (Mn, Zn, Ni, Cd) and anions (chloride, sulphate and nitrate) was studied in the laboratory in an acidified brown soil from a Norway spruce forest. Lysimeters containing undisturbed soil columns of the A-horizon and the A- plus B-horizon were watered with 540 mm of throughfall precipitation collected in situ, either directly (pH 3.6) or adjusted to pH 3.3 or 2.8. The pH 3.3 treatment increased leaching of Mn and Cd from the B-horizon. The pH 2.8 treatment increased leaching of ammonium, Na, Ca, Mg, K, Mn, Zn and Cd from the A-horizon and ammonium, Al, Na, Ca, Mg, K, Mn, Zn and Cd from the B-horizon. Fe leaching from the A-horizon was decreased by both acidic treatments, and the pH of the leachates was not significantly affected. Sulphate retention was 138-161 meq m?2 yr?1 by all treatments. Due to experimental conditions nitrate leaching was observed in all lysimeters.  相似文献   

5.
Water samples from 18 springs and 13 drainage canals and subcanals were collected from Al-Ahsa Oasis. Concentrations of total dissolved salts, Cl, SO4 HCO3, B, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, V, Ti, and Zn were determined. The soil salinity development (SSD), the adjusted Na ratio (adj. SAR), the adjusted Na adsorption ratio (adj. RNa), and exchangeable Na percentage (ESP) were calculated. Sodium was the most abundant cation in all water samples followed by Ca, Mg, Sr, and K in descending order. Concentrations of all other metals were below 0.1 mg L–1. Chloride was the most abundant anion, followed by SO4 and HCO3 in these waters. A significant correlation (P < 0.05)=" between=" na=" and=" cl=" in=" water=" samples=" was=" found.=" thermodynamic=" calculations=" revealed=" that=" an=" appreciable=" fraction=" of=" ca=" and=" mg=" in=" spring=" and=" drainage=" waters=" were=" associated=" with=">4 and HCO3 ions. Calcium increased from less than 10 meq L–1 in spring waters to > 16 meq L–1, Mg was doubled, and Na and Cl increased several times in the drainage waters. The salinity and sodicity hazards of the spring and drainage waters were classified as C4S2 i.e. high salinity with medium sodicity problems.  相似文献   

6.
Response of soil and soil water of podzols in the Kola Peninsula to acid deposition was estimated under both field and laboratory conditions. A significant increasing trend of exchangeable acidity in organic (O) horizons and exchangeable Al in podzolic (E) horizons of podzols with distance from the nickel smelter was observed. The simulated rain at pH 4.5 did not alter chemical properties of soils and soil solutions. As much as 95–99% of the applied H+ ions were retained by soils and appeared in the percolates after a treatment period that depended on acid load and soil thickness. Ca and Mg in soil solutions were highly sensitive to acid loading. Simulated acid rain enhanced the leaching of exchangeable base cations out of root zone. Acid inputs resulted in decreased pH, amount of exchangeable base cations and base saturation, in elevated exchangeable acidity and it's Al fraction in soil solid phase. The most significant changes occurred in O and E horizons. Substantial amounts of both Ca and Mg can be lost from the root zone of podzols in the north-western Kola, subjected to acid deposition, thus leading to forest productivity damage.  相似文献   

7.
There are two contrasting types of wetlands in Belize: marl- and sand-based marshes. We measured accumulation rates of sediment in six cores from marl- and sand-based marshes of northern Belize and compared biogeochemical characteristics to assess recent wetland history (1850 to present). Sediment depth increments were analysed for bulk density, LOI, nutrients (C, N, P, S, Ca, Mg, K and Na) and snail shell density and species diversity. Cores were dated using 210Pb and a constant rate of supply model. Unsupported 210Pb inventories of the cores ranged from 6.16 to 8.92 pCi cm−2. Marl-based marshes showed the maximum peak of 210Pb activity from 4 to 10 cm below the sediment surface. 210Pb peaks corresponded with the bottom of a marl layer containing chlorophyll a and we suggest that this relationship reflects the high growth and decomposition rates of cyanobacterial mat. Inorganic carbon, Ca, Mg, K, Na, S and Pb contents and accumulation rates were much greater in the marl-based marshes than in the sand-based marshes. Average dry mass accumulation rates in the six marshes ranged from 113 to 572 g m−2 year−1 over the past 100 years. Average linear sedimentation rates during the last 100 years in the two types were not significantly different (0.93 and 1.08 mm year−1, respectively). Increased sediment accumulation by human activities such as soil washout from adjacent roads was recorded in a sand-based marsh near roads. Sediment cores in the marl-based marshes display changes of marsh vegetation, apparently caused by water level changes. The vegetation change occurred at the end of the 1800s and the beginning of 1900s and is represented by a band of dark peat in otherwise marl-dominated sediments. Overall, the sediment cores show that conditions were relatively undisturbed by human activities in the recent past.  相似文献   

8.
Abstract

The relationship between water soluble and exchangeable cations (Ca, Mg, Na, and K) was investigated for surface horizons of 195 soils including many taxonomic categories and a wide range in physical and chemical properties from around the world. This will provide information on exchangeable soil cation solubility for use in estimating plant uptake and leaching potential. Amounts of water soluble and exchangeable cations were not consistently related (r2 of 0.50, 0.08, 0.77, and 0.49 for Ca, Mg, Na, and K). High correlations were biased by high water soluble and exchangeable cation levels of a few soils that had 3.8‐ and 2.5‐fold greater mean than median values. The ratio of exchangeable to water soluble cations was closely related to cation saturation (r2 of 0.87, 0.95, 0.95, and 0.93 for Ca, Mg, Na, and K, respectively). As the degree of saturation of the exchange complex by a certain cation increased, solubility Increased. A change in saturation had less effect on K than on Na, Mg, and Ca solubility. Only exchangeable soil cations (NH4OAc extractable) are routinely measured and reported in soil survey reports, thus, water soluble levels may be determined from cation saturation. This will allow estimation of the amounts of cation that can potentially move in solution through the soil or be taken up by plants. Use of cation saturation, in addition to exchangeable content, will better characterize soil cation availability by representing quantity, intensity, and buffer factors.  相似文献   

9.
The results of physico-chemical investigations of an Ultisol subsoil under a 2-year old fallow in eastern Amazonia are presented. Subsoil chemistry was studied using 4 different approaches: i) concentrations of H, Na, K, Ca, Mg, Mn, Al, and Fe in seepage water were measured under field conditions, ii) the equilibrium soil chemistry was studied in sequential batch experiments where the soil was treated with different solutions, iii) results of batch experiments were simulated with a chemical equilibrium model, and iv) the seepage data were calculated using selectivity coefficients obtained by modelling the batch experiments. The model included multiple cation exchange, precipitation/dissolution of Al(OH)3 and inorganic complexation. Cation selectivity coefficients were pKx/Casel: X = Na: 0.3, K: 0.8, Mg: ?0.1, and Al: 0.4. The amount of cations sorbed ranged from ?0.2 to 2.0 (K), ?0.7 to 2.3 (Mg), ?1.6 to 1.8 (Ca), ?4.8 to 3.6 (Al) and 0.0 to 8.5 (Na) mmolc kg?1. The model predictions were good with values lying within 0.3 pH units (for the pH range 3.7 to 7.2), and 3% of CEC for individual cations. The most important proton buffer reaction seemed to be the dissolution of gibbsite and a large release of Al into the soil solution. When selectivity coefficients obtained by the modelling procedure were used to predict the field data for cation concentrations in the seepage water, they decreased in the following order: Na > K > Ca > Mg > Al. These calculated values were similar to the measured order: Na > Ca > K ≈ Mg > Al. Thus the options for managing these soils should be carefully chosen to avoid soil acidification which may result from inappropriate use of fertilizer during the cropping period.  相似文献   

10.
The management of wood ash is an important factor in the environmental and economic analysis of wood burning. Wood ash can be applied to energy crops as a fertilizer, which can help replace nutrients removed during harvest. The objectives of this study were to examine the temporal and spatial dynamics of nutrient elements applied in wood ash to an intensively cultured, short-rotation willow bioenergy system. Wood ash was applied at the rates of 10 and 20 Mg ha–1 yr–1 to coppiced willow, Salix purpurea, clone SP3, from 1992 to 1994. The relative abundance of nutrients in applied wood ash was Ca > K > Mg > P > N. There was little effect of wood ash on N or P concentrations in soil solution measured at 20 and 40 cm depth. Soil solution concentrations of base cations were elevated in the last two years of the study by 30 to 90%, depending on the element and treatment, in plots receiving wood ash. Wood ash treatments had little influence on foliar leaching. Wood ash treatment also had few significant effects on willow growth or on the contents of N, P, K, Ca, and Mg in foliage and stems. The addition of P, K, Ca, and Mg in wood ash was more than enough to compensate for harvest removals and leaching losses. This study demonstrated that wood ash can supply most nutrients removed during harvest in willow plantations, with the exception of N, without adverse effects on groundwater or vegetation.  相似文献   

11.
To elucidate the influence of airborne materials on the ecosystem of Japan??s Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO3 contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct 87Sr/86Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81?% for Na, 83?% for Mg, 36?% for K, 32?% for Ca, and 33?% for Sr. The Sr value was comparable to the 28?% estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have 87Sr/86Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China??s loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima??s ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.  相似文献   

12.
Biochar affects base cation retention and leaching when it is used to enhance the base cation status of acidic soil. However, the details of its contribution are not yet clear. In this study, six loadings of corn straw biochar (0%, 2%, 4%, 6%, 8% and 10%, w/w) were applied to an acidic Ferralsol and incubated for 1 year. The results showed that the content of water-soluble and exchangeable base cations of K, Na, Ca and Mg increased with increasing levels of biochar in amended soil. The percentage of water-soluble Na, Ca and Mg of amended soil significantly decreased, while the percentage of exchangeable K, Ca and Mg increased significantly after the addition of biochar. For K and Na, biochar affected their leaching concentrations both as a source and by increasing the pH. For Ca, biochar reduced Ca leaching when the biochar loading was ≥4%, and the contribution increased from 30.8% to 100% at 4%–10% loading. For Mg, biochar reduced Mg leaching at biochar loadings 2%–10%, the reduction increasing from 22.0% to 70.5%. The results show that corn straw biochar can increase the content of the soil nutrient base cations K, Ca and Mg by increasing their exchangeable forms and enhance soil retention by decreasing their leaching. Thus, corn straw biochar can be used to effectively improve acidic soil base cation fertility.  相似文献   

13.
Abstract

Two rates of Mg, 0 and 56 kg/ha, were randomized within each of 43 cultivars that had previously been established in a randomized complete block design. The 43 cultivars consisted of 6 species. Forage samples were obtained in early spring and chemically analyzed for content of Ca, Mg and K.

Grass species and cultivars with species significantly differed in content of Ca, Mg and K and in the ratio meq K/(meq Ca + meq Mg). Significant interactions of Mg with species and Mg with cultivars within species were observed. At the relatively low level of soil Mg and Mg rate, no cultivar contained 0.20% Mg, a value often used to identify proneness to grass tetany. However, no cultivar had an average meq ratio, K/(Ca + Mg), greater than 2.2, a value often used in diagnosing potential tetany problems that might be associated with intake of low Mg forage.

The interaction of cultivar with Mg rate indicates that fertilizer Mg level influenced cultivar content of Mg, and that the effect was not consistent for all cultivars.  相似文献   

14.
The leaching of Ca, Mg, and K from canopies is a major pathway of these cations into forest soils. Our aim was to quantify rates of canopy leaching and to identify driving factors at the regional scale using annual fluxes of bulk precipitation and throughfall from 37 coniferous and deciduous forests of North and Central Europe. Total deposition of Ca, Mg, K, and H+ was estimated with Na as an index cation. The median canopy leaching increased in the order: Mg (0.11 kmolc ha–1 a–1) < Ca (0.31 kmolc ha–1 a–1) < K (0.39 kmolc ha–1 a–1). Canopy leaching of Ca and K was positively correlated with the calculated total H+ deposition and H+ buffered in the canopy, whereas canopy leaching of Mg was not. With contrasting effects, fluxes of SO4‐S and NH4‐N in throughfall explained to 64 % (P<0.001) of the Ca canopy leaching. Fluxes of NH4‐N and Ca were negatively correlated, suggesting that buffering of H+ by NH3 deposition reduced canopy leaching of Ca. Amount of bulk precipitation and SO4‐S in throughfall were identified as much weaker driving factors for canopy leaching of K (r2=0.28, P<0.01). Our results show that Ca is the dominant cation in buffering the H+ input in the canopy. At the regional and annual scale, canopy leaching of Mg appears to be unaffected by H+ deposition and H+ buffering in the canopy.  相似文献   

15.
庄翔宇  杨金玲  张甘霖  王艳玲 《土壤》2016,48(2):374-380
矿物风化过程中盐基离子释放遵从一定的化学计量关系,这种化学计量关系一般只能通过模拟实验来获取。本研究采用pH 7.0的EDTA-乙酸铵溶液将土壤中的交换性盐基离子完全洗脱出来,然后用Batch方法模拟不同pH溶液淋溶洗脱盐基和未洗脱盐基土壤,旨在消除土壤中交换性盐基离子的影响后更为准确地判断土壤矿物风化的盐基离子释放特征。结果表明:未洗脱盐基土壤的淋出液pH由3.73±0.14逐渐上升到4.23±0.06,主要原因是淋溶液中有高浓度的NH_4~+;洗脱盐基土壤矿物风化后淋出液pH从7.39±0.02逐渐下降到5.39±0.17,主要是由于土壤中可风化矿物减少。土壤交换性盐基离子会改变盐基离子释放特征、释放总量:未洗脱盐基土壤经酸雨淋溶后,各盐基离子释放均呈现急速下降后逐渐平缓的趋势,洗脱盐基土壤矿物风化后,K~+及盐基离子释放总量呈波动上升趋势,且盐基离子释放总量比未洗脱盐基土壤低。土壤交换性盐基离子的存在还会改变淋出液中的盐基离子化学计量关系:未洗脱盐基土壤的K~+︰Ca~(2+)︰Mg~(2+)︰Na+化学计量关系为11︰13︰4︰1(当量比),而洗脱盐基土壤为7︰2︰2︰1。K~+是盐基离子中风化释放量最多的,大部分K~+来自于土壤中云母的风化。因此,只有利用洗脱盐基土壤的盐基离子释放量才能准确计算矿物风化速率并获得准确的化学计量关系。土壤矿物风化作用随着淋溶液酸度增大而增强,但模拟一年降雨量的情况下,p H 3.5、4.5和5.5三种不同p H溶液对矿物风化后盐基离子的释放在实验期间没有显著性影响,较长时间后的差异性有待观察。本研究表明,可以通过预洗脱盐基土壤然后模拟酸雨淋溶的方法,观察矿物风化特征,特别是盐基离子释放的化学计量特征。  相似文献   

16.
Abstract

An experiment was carried under controlled conditions to investigate the influence of the anions, H2PO4 . and Cl on the ionic equilibria, selectivity and effective diffusion of Rb, K, Na, Ca, Mg in two Indiana soils.

Additon of anions to the soils increased the concentration of cations in soil solution. In both the soils receiving H2PO4 , lower cation concentrations were found in the soil solution than in those receiving Cl . Additon of H2PO4 and Cl reduced the ion selectivity coefficient, k, for various homovalent (Rb/K, Rb/Na, K/Na, Ca/Mg) and mono‐divalent ion pairs (Rb/Ca, Rb/Mg, K/Ca, K/Mg). In Zanesville soil treatments receiving H2PO4 had lower k values for mono‐divalent cations than treatments receiving Cl. However, no such conclusions could be drawn for Raub soil. Soils treated with H2PO4 had higher k values for homovalent cations than Cl treated soils. The differences in the selectivity of adsorption in these two soils might be attributable to the differences in the type and nature of exchange materials and cation concentrations on the exchange phase.

Addition of H2PO4 or Cl enhanced the magnitude of effective diffusion coefficient. (De) of all the cations under considerations. The magnitude of effective diffusion coefficient for cations was lower for H2PO4 treated soils than Cltreated soils. Such a reduction in De is related to the reduction in cation concentration in soil solution thereby increasing the buffer capacity for the ions under consideration.  相似文献   

17.
Total Suspended particulate matter (TSP) in urban atmosphere of Islamabad was collected using a high volume sampling technique for a period of one year. The nitric acid–perchloric acid extraction method was used and the metal contents were estimated by atomic absorption spectrophotometer. The highest mean concentration was found for Ca at 4.531 µg/m3, followed by Na (3.905 µg/m3), Fe (2.464 µg/m3), Zn (2.311 µg/m3), K (2.086 µg/m3), Mg (0.962 µg/m3), Cu (0.306 µg/m3), Sb (0.157 µg/m3), Pb (0.144 µg/m3) and Sr (0.101 µg/m3). On an average basis, the decreasing metal concentration trend was: Ca > Na > Fe > Zn > K > Mg > Cu > Sb > Pb > Sr > Mn > Co > Ni > Cr > Li > Cd ≈ Ag. The TSP levels varied from a minimum of 41.8 to a maximum of 977 µg/m3, with a mean value of 164 µg/m3, which was found to be higher than WHO primary and secondary standards. The correlation study revealed very strong correlations (r?>?0.71) between Fe–Mn, Sb–Co, Na–K, Mn–Mg, Pb–Cd and Sb–Sr. Among the meteorological parameters, temperature, wind speed and pan evaporation were found to be positively correlated with TSP, Ca, Fe, K, Mg, Mn and Ag, whereas, they exhibited negative relationships with relative humidity. On the other hand, Pb, Sb, Zn, Co, Cd and Li revealed significant positive correlations with relative humidity and negative with temperature, wind speed and pan evaporation. The major sources of airborne trace metals identified with the help of principle component analysis and cluster analysis were industrial emissions, automobile exhaust, biomass burning, oil combustion, fugitive emissions, resuspended soil dust and earth crust. The TSP and selected metals were also studied for seasonal variations, which showed that Na, K, Zn, Cu, Pb, Sb, Sr, Co and Cd peaked during the winter and remained lowest during the summer, while Ca, Fe, Mg and Mn were recorded highest during the spring.  相似文献   

18.
A four-year study in a forest catchment exposed to a moderate level of anthropogenic pollution indicated heavy accumulation of hydrogen (H+), manganese (Mn), zinc (Zn), copper (Cu) and lead (Pb) in the ecosystem and phosphorous (P), potassium (K) and cadmium (Cd) to a lesser extent. Nitrogen, which is also accumulated, is leached mainly as NO3 , even though the input is dominated by NH4 +. Magnesium (Mg), calcium (Ca) and sodium (Na) are leached from the catchment, presumably due to intensive weathering processes in deeper layers of mineral soil. Chloride ion (Cl) is also lost from the ecosystem. The output of sulphate (SO4 2–) with stream water exceeds its input only slightly. Although it appears that the catchment as a whole has a large buffering capacity (average stream water pH=7.43, rainfall pH=4.33), the upper biologically active soil layers are probably more susceptible to acidification and pollution. With constant accumulation of H+ and heavy metal ions this may lead to degradation of forest health.  相似文献   

19.
Watershed ecosystem analysis has been used to study aspects of nutrient cycles in many regions of the US. Here we quantify watershed input-output budgets and intrasystem cycling of the base cations Ca, K and Mg in a montane Virginia ecosystem. The intrasystem fluxes of uptake, return, canopy leaching and mineralization were simulated over the period of forest aggradation. A forest-dynamics model, based on previous models, was created to model biotically-driven fluxes at this site; biomass nutrient concentrations were parameterized with a field study. A two-year watershed mass-balance study was then conducted to estimate geologic fluxes for comparison with modeled biotic fluxes. Results show the major biotic fluxes to be much greater, highlighting the importance of considering biomass dynamics in ecosystem nutrient-cycling studies. Mineralization from forest-floor biomass compartments proved to be an increasingly important avenue for internal recycling during aggradation. Accumulation of base cations in biomass also corresponded to a production of H+ in soil at three times the H+ levels in atmospheric deposition at this location. Such high levels of base removal in soils could exceed weathering rates and may result in a depletion of bases from the soil exchange complex.  相似文献   

20.
Abstract

Sudangrass (Sorghum sudanense, ‘Piper’ Stapf) was grown in the greenhouse in a slightly calcareous sample of Shano silt loam. The purpose of the study was to evaluate plant response to Mg and to determine any changes in Mg nutrition following individual or composite application of Mg, Ca, K and Na as nitrate compounds. The concentration of Mg in plant tissue decreased following K application and increased with each increment of Mg applied irrespective of variations in the proportions of Ca and Na included in the treatments. A base treatment including Ca, Na, and K applied with or without Mg showed a significant yield response to Mg. The Mg response was attributed to a more favorable ionic balance in the growth medium with respect to Mg because the soil was not particularly Mg deficient. Application of Mg in this case lowered the plant K concentration significantly, increased the concentration of Mg, and gave a lower K/(Ca+Mg) ratio in the foliage than was obtained without Mg. Results suggest that high levels of other nutrient cations may adversely affect the Mg nutrition of crops growing on alkaline soils not abundantly supplied with available Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号