首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

2.
The requirement for taurine in juvenile Japanese flounder Paralichthys olivaceus was determined by feeding diets containing various levels of taurine and cystine. Test diets supplemented with 0.5, 1.0 and 1.5% of taurine or with 0.5, 1.0 and 1.5% of L -cystine were prepared. The basal diet contained 55% protein from white fish meal. These diets were fed to juvenile Japanese flounder with an initial mean bodyweight of 0.9 g (total length (TL) 48 mm) for 5 weeks. Approximately 1.4% taurine content in the diet was required for optimum growth of juvenile flounder. A positive linear relationship was noted between the content of taurine accumulated in the muscle, liver and brain and the level of taurine in the diet. However, there was no increased taurine content in tissues of fish fed the cystine-supplemented diet. In contrast, the fish fed control and cystine-supplemented diets showed higher contents of cystathionine in the tissues. The concentration of cystathionine in tissues rapidly decreased with an increase of taurine in the diet. It was also observed that for each of the dietary groups, a trace amount of taurine was excreted. These results suggest that the taurine content in the diet affects the sulfur amino acid metabolism of juvenile Japanese flounder, and indicate that juvenile flounder are unable to biosynthesize taurine from cystine.  相似文献   

3.
This study was performed to determine the effect of the dietary inclusion of various sources of green tea on growth, body composition and blood chemistry of the olive flounder. Twenty-five juvenile fish were distributed into each of 15 180 l flow-through tanks. Five experimental diets with triplicates were prepared: control, raw leaves, dry leaves, by-product and extract. The 5% various sources (raw leaves, dry leaves and by-product) of green tea were included in the experimental diets at the expense of 5% wheat flour. The extract was diluted with water and mixed with the ingredients to maintain 5% green tea at the same concentration as in the other diets. Weight gain and specific growth rate of fish fed the control diet and experimental diet containing extract were higher than those of fish fed the diets containing raw and dry leaves and by-product. Feed and protein efficiency ratio for fish fed the control diet and diet containing extract was higher than for fish fed the diets containing raw leaves and by-product. The level of low-density lipoprotein (LDL) cholesterol of fish fed the control diet was higher than that of fish fed the other diets containing various sources of green tea. The glutamic oxaloacetic transaminase (GPT) concentration of fish fed the diets containing raw leaves and extract was lower than that of fish fed the control diet. Crude lipid content of liver in fish fed the control diet was higher than that in fish fed the diets containing raw and dry leaves and by-product but was not significantly different from that of fish fed the diet containing extract. Dietary inclusion of extract was the most effective way to improve growth and feed utilization of the olive flounder among the various sources of green tea, and all sources of green tea were effective in lowering serum LDL cholesterol and GPT of the fish.  相似文献   

4.
The olive flounder Paralichthys olivaceus is one of the most commercially important fish species in Korea. In order to formulate better diets for cultured olive flounder we evaluated the optimum dietary protein requirements for larval, fry and juvenile olive flounder, and the optimum dietary protein to energy ratio for juvenile olive flounder. Results of four separate experiments suggested that the optimum dietary protein requirements were 60% in larvae (0.3 g), 46.4–51.2% in 4.1-g juvenile, and 40–44% in 13.3 g growing olive flounder. The optimum dietary protein to energy ratio based on weight gain, feed efficiency, specific growth rate, and protein retention efficiency was 27–28 mg protein/kJ 2 energy (35 and 45% CP for diets containing 12.5 and 16.7 kJ energylg diet, respectively).  相似文献   

5.
Some effects of dietary medicinal herbs mixture (HM), Massa medicata fermentata, Crataegi fructus, Artemisia capillaries, and Cnidium officinale, in the proportions 2∶2∶1∶1 were identified in juvenile Japanese flounder Paralichthys olivaceus. In an 8-week feeding trial, fish were fed with 0.1, 0.3, 0.5, and 1.0% HM in a moist diet composed of horse mackerel and an artificial diet in equal parts. Fish fed the diets with 0.3, 0.5, and 1.0% HM showed higher weight gain and feed efficiency than fish in 0.1 and 0% HM feed groups. No significant differences were found in survival, feed intake, final carcass proximate composition, hemoglobin and hematocrit levels, plasma total cholesterol level, and alanine aminotransferase activity among the dietary treatments. Fish fed with 0.3, 0.5, and 1.0% HM showed higher total carcass unsaturated fatty acid content and docosahexaenoic acid (22∶6n−3) level, and plasma high density lipoprotein-cholesterol level, but lower carcass saturated fatty acid content and plasma aspartate aminotrasferase activities than the control group. Moreover, a 10-min air exposure test with five times repeat, and an anesthesia test for 2 min with 200 p.p.m. 2-phenoxyethanol, also revealed lower mortality and lower recovery time in 0.3, 0.5, and 1.0% HM groups than the control group at the end of the trial. These results indicate that the medicinal herb mixture is useful to improve growth, fatty acid utilization, and stress recovery in the Japanese flounder.  相似文献   

6.
A study was carried out to examine and optimize the inclusion levels of shrimp hydrolysate (SH) or tilapia hydrolysate (TH) in low fishmeal diets for olive flounder (Paralichthys olivaceus). A fishmeal (FM)‐based diet was considered as a high FM (HFM) diet, and a diet containing soy protein concentrate (SPC) as a FM replacer at 50% substitution level was regarded as a low FM (LFM) diet. Six other experimental diets were prepared by dietary supplementation of SH or TH to LFM diet at different inclusion levels of 15 g/kg, 30 or 45 g/kg in the expense of FM (designated as SH‐1.5, SH‐3.0, SH‐4.5, TH‐1.5, TH‐3.0 and TH‐4.5, respectively). After 10 weeks of a feeding trial, growth performance and feed utilization efficiency of fish were significantly higher in fish fed HFM, SH‐3.0, SH‐4.5, TH‐1.5 and TH‐3.0 diets compared to those of fish fed LFM diet. Intestine diameter, villus height and goblet cell counts of fish were significantly increased by dietary inclusion of SH or TH into LFM diet. Dry matter and protein digestibility of diets were significantly improved by SH or TH incorporation. Innate immunity of fish was significantly enhanced by dietary SH or TH supplementation into LFM diet. Disease resistance of fish was significantly increased against Edwardsiella tarda by dietary inclusion of SH and TH at the highest inclusion level (45 g/kg). The optimum inclusion level of SH or TH in a SPC‐based LFM diet could be ~30 g/kg and 15–30 g/kg, for olive flounder.  相似文献   

7.
Abstract.— Growth studies were conducted to determine the dietary methionine requirement of juvenile Japanese flounder Paralichthys olivaceus . A basal diet was formulated to contain 50% crude protein from casein and gelatin, as intact protein sources, supplemented with crystalline L-amino acids (CAA), to correspond to the amino acid pattern found in the whole body protein of the juvenile Japanese flounder, except methionine. Test diets contained six graded levels of L-methionine 0.53, 0.83, 1.13, 1.43, 1.73, and 2.03% of diet (dry matter basis) or 1.06, 1.66, 2.26, 2.86, 3.46 and 4.06% of protein. To prevent leaching losses of water-soluble amino acids, CAA were pre-coated with carboxymethylcellulose (CMC), and diets were further bound with both CMC and κ-carrageenan after addition of the pre-coated CAA. Weighing about 2.80 g, each triplicate group of the juvenile flounder were fed test diets twice a day (5% of body weight) for 40 d. Survival rate, specific growth rate, feed conversion efficiency and apparent protein retention were significantly ( P < 0.05) affected by dietary methionine concentrations. The optimum dietary level of methionine in the presence of 0.06% of dietary cystine for Japanese flounder juvenile was estimated by using break point analysis. The values determined based on weight gain and feed efficiency were 1.49% of diet (or 2.98% of protein) and 1.44% of diet (or 2.88% of protein), respectively. These requirement values are close to the methionine level of flounder whole body protein.  相似文献   

8.
The ability of juvenile summer flounder Paralichthys dentatus to utilize dietary lipid as energy, and the effect of dietary lipid on weight gain and body composition was investigated in a 12-week feeding trial. Diets were formulated to provide 55% crude protein from herring meal and casein. Menhaden oil was added to produce diets with 8, 12, 16 or 20% total lipid while providing 16.0 kJ available energy/g dry diet. The diet containing 20% total lipid supplied 16.7 kJ available energy/g dry diet due to the high levels of protein and lipid. An additional diet was included to reproduce currently available commercial diet formulations for flounder, providing 55% crude protein supplied solely from herring meal and 16% total dietary lipid. Juvenile summer flounder (initial weight 23 g) were stocked into triplicate aquaria in a closed, recirculating system maintained at 20 C. Fish were fed 2% of body weight each day divided into two equal feedings. Upon termination of the study, effects of dietary lipid on weight gain, body condition indices, and proximate composition were determined. Weight gain (96–149% of initial weight), feed efficiency ratio values (0.43–0.48). fillet yield, and whole-body composition all were unaffected by dietary lipid level. High levels of dietary lipid did increase the lipid content in the finray muscle, as fish fed diets containing 16 and 20% dietary lipid had significantly higher lipid levels than fish fed the diet containing 8% lipid. No apparent protein sparing effect of lipid was observed. These data indicate that currently available commercial feeds for summer flounder may be over-formulated and show a need for further research to determine specific and accurate nutritional information for this species.  相似文献   

9.
ABSTRACT:   The effect of dietary taurine on juvenile Japanese flounder was determined by feeding three taurine-supplemented experimental diets (TAU) and a commercial diet (CD) to evaluate a practical diet for juvenile Japanese flounder. Juvenile Japanese flounder were reared on the three experimental diets supplemented with taurine at 0, 0.5, 1.0% and CD. These diets were fed to juvenile Japanese flounder of an initial mean body weight of 0.2 g for 6 weeks at 20°C and the taurine contents of the whole body and tissues were analyzed. The final average body weight of juvenile Japanese flounder fed the 1.0% TAU was significantly higher than that of the other groups. Taurine contents in the whole body and tissues increased with the increase in dietary taurine level. These results indicate that juvenile Japanese flounder require at least 15 mg/g taurine in the diet, even though a combined mix of fish, krill and squid meal was the main protein source in the experimental diets.  相似文献   

10.
The effect on growth and body composition of various dietary additives with putative growth or health‐enhancing properties were determined in juvenile olive flounder (25 g initial weight). Nine experimental diets were prepared to contain one of the following additives: control (Con) with no additive, Opuntia ficus‐indica ver. saboten (OF), propolis (PP), lactic acid bacteria (LA), γ‐poly‐glutamic acid (PG), onion extract (OE), organic sulfur (OS), Biostone® (BS), and fig extract (FE). Fishmeal, dehulled soybean meal, and corn gluten were used as the protein source of the experimental diets. Wheat flour and soybean oil were used as the carbohydrate and lipid sources, respectively. Dietary additives were included in each experimental diet at 1% at the expense of wheat flour except for the FE (aqueous), which was substituted at 1% of the amount of water added to the diet. Fish were hand‐fed to satiation twice a day for 6 d/wk for 6 wk. Weight gain of fish fed the OE diet was higher than that of fish fed with the PP diet. Chemical composition of fish was not different among the experimental diets. OE was the most effective dietary additive to improve performance of olive flounder among additives used in this study.  相似文献   

11.
This study was carried out to investigate the effects of dietary inclusion of defatted Chlorella on growth performance, body composition, blood biochemistry, and antioxidant enzyme activity in olive flounder. Four isonitrogenous (51% crude protein) diets were formulated to contain 0 (control), 5, 10, or 15% Chlorella meal (CM) (designated as Con, CM5, CM10, and CM15, respectively) and fed to triplicate groups of fish (104.4 g) to apparent satiation twice daily for 8 wk. At the end of the feeding trial, significant enhancement (P < 0.05) in growth performance was obtained at over 10% CM compared to fish fed the control diet. No significant changes in dorsal muscle and liver proximate composition were found following CM administration. The groups fed CM‐containing diets revealed significantly lower plasma cholesterol concentration than those fed the control diet. Dietary CM affected antioxidant enzyme activity; significantly higher plasma catalase activity was found in fish fed ≥10% CM and total antioxidant capacity increased in CM5 and CM10 groups compared to the control. However, plasma glutathione peroxidase and superoxide dismutase activities were not significantly influenced by dietary CM. Also, significant enhancement in 1,1‐diphenyl‐2‐picryl‐hydrazyl radical scavenging activity was found in dorsal muscle of fish fed CM15 diet compared to the control. The findings in this study showed that dietary inclusion of 10–15% CM can enhance growth performance and affect antioxidant enzyme activity and lipid metabolism in olive flounder.  相似文献   

12.

Here, we investigated the effect of dietary cysteic acid on the growth performance, sulfur amino acid content, and gene expression levels of taurine-synthesizing enzymes, growth hormone (GH), and insulin-like growth factor 1 (IGF-1) in Japanese flounder Paralichthys olivaceus. Juvenile flounder (0.9 g) were fed one of four diets for 30 days: with 0.25, 0.5, or 1.0% cysteic acid (C0.25, C0.5, C1.0) supplementation and without supplementation (control). Fish in the C0.25 and C0.5 groups showed significantly better growth than those in the control group (P < 0.05). Body taurine content was significantly higher in C0.25, C0.5, and C1.0 fish than in control fish (P < 0.05). Although there was no significant difference in gene expression levels of taurine-synthesizing enzymes and GH among groups (P > 0.05), the expression level of IGF-1 in C1.0 fish was significantly higher than that in controls (P < 0.05). Our results suggest that Japanese flounder can synthesize taurine from cysteic acid, that dietary supplementation with up to 0.5% cysteic acid promotes fish growth, and that dietary cysteic acid can affect the GH-IGF axis in Japanese flounder. These findings thus highlight the importance of the cysteic acid pathway for taurine synthesis and growth in this species.

  相似文献   

13.
This study was conducted to evaluate the effects of dietary supplementation of Barodon, an anionic alkali mineral complex, on growth, feed utilization, humoral innate immunity and disease resistance of olive flounder. A basal experimental diet was used as a control and supplemented with 0.1, 0.2, 0.3, 0.4, or 0.5% Barodon. Triplicate groups of fish (26.4 ± 0.2 g) were fed one of the diets to apparent satiation twice daily for 10 wk. The growth performance was enhanced (P < 0.05) linearly and quadratically in fish fed diets containing Barodon compared with that in fish fed the control. Feed utilization was significantly improved by Barodon supplementation. Serum lysozyme and antiprotease activities were increased quadratically in Barodon fed groups. Also, significantly higher superoxide dismutase activity was found in Barodon‐fed fish. Dietary supplementation of 0.1–0.3% Barodon resulted in significant enhancement of fish disease resistance against Streptococcus iniae. The findings in this study indicate that dietary supplementation of Barodon can enhance growth, feed utilization, innate immunity, and disease resistance of olive flounder and that the optimum level seems to be 0.1% in diets.  相似文献   

14.
This study evaluated the effects of dietary Aloe vera polysaccharides on growth performance, feed utilization, hemato-biochemical parameters, and resistance against low water pH in African catfish (Clarias gariepinus) fingerlings. Fish were divided into five triplicate groups before being fed feeds supplemented with 0% (control), 0.5%, 1.0%, 2.0%, and 4.0% A. vera/kg diet for 8 weeks. Fish fed 1.0% A. vera/kg diet had significantly increased (P < 0.05) growth parameters (i.e., final weight, weight gain, absolute growth rate, and specific growth rate) compared to unsupplemented ones. Among dietary groups, significantly lower feed conversion ratio was presented in fish fed 1.0% followed by those fed 0.5, 2.0%, and 4.0% A. vera/kg diet (P < 0.05). The protein efficiency ratio was significantly higher (P < 0.05) in fish fed 1.0% A. vera/kg diet compared to unsupplemented fish and those fed 4.0% A. vera/kg diet, respectively. Dietary A. vera polysaccharide crude extracts requirement suitable for growth and feed utilization was estimated to be between 1.76 and 1.79% A. vera/kg diet. Overall, A. vera extracts had improved hemato-biochemical indices when compared to unsupplemented fish, and decreased some of the indices, especially at high dietary inclusion level (4%/kg diet). Furthermore, A. vera-supplemented fish had higher survival probability throughout the low water pH challenge period, except those fed 4% A. vera/kg diet and control diet.  相似文献   

15.
A two (dietary energy levels; low energy, LE and high energy, HE) × 4 (feeding frequency; one feeding in 2 days, one feeding daily, two times daily and three times daily) factorial experiment was performed to determine the effects of dietary energy level and/or feeding frequency on the growth and body composition of juvenile flounder Paralichthys olivaceus. The survival rate was not significantly different among treatments. Weight gain of fish fed the LE and HE diets significantly increased as feeding frequency increased. The weight gain of fish fed the LE diet was higher at each level of increasing feeding frequency. The weight gain of fish fed the HE diet was higher than that of fish fed the LE diet once in 2 days and once daily, but weight gain of fish fed the HE diet was lower than the LE diet three times daily. Daily feed intake was significantly influenced by feeding frequency, but not by dietary energy level. Feed efficiency of fish fed the HE diet once daily was significantly higher than that of fish fed the LE diet once in 2 days, but no significant difference in feed efficiency was observed among other groups of fish. The protein efficiency ratio of fish fed the LE diet once in 2 days was the lowest. Feeding frequency and dietary energy level had a significant effect on the body lipid content. A feeding frequency of two times or three times daily would be effective, depending on dietary energy level for maximum growth of juvenile flounder grown from 3.5 to 15 g.  相似文献   

16.
Experimental diets were formulated containing six levels of linolenic acid (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) and each diet was fed to darkbarbel catfish Pelteobagrus vachelli in triplicate for 84 days. Weight gain, specific growth rate and feed efficiency increased with the increasing levels of dietary linolenic acid, but were not significantly different among diets containing 1.0%, 1.5%, 2.0% and 2.5% linolenic acid. Red blood cell count and haemoglobin were significantly higher in fish fed the 1.0% linolenic acid than other diets. Lysozyme activity and immunoglobulin M content in fish fed 1.0% of linolenic acid were significantly higher compared with the other diets. Antibody titre in fish fed 1.0–2.5% linolenic acids was significantly higher than in fish fed 0 or 0.5% linolenic acid 14 days after Aeromonas hydrophila challenge. This study indicates that linolenic acid is essential to darkbarbel catfish. Two‐straight broken‐line analysis with SGR showed that a dietary level of 1.29% linolenic acid is the minimum required for adequate growth of darkbarbel catfish. Considering other measured indicators of fish performance, a level of 1.0–1.5% linolenic acid in the diet is recommended for the darkbarbel catfish.  相似文献   

17.
This study was conducted to investigate the effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder. Three different taurine level diets were prepared by supplementation of taurine (T-0%, 0.5% and 1.5%) to the basal diet. Fish meal washed with 70% ethanol to remove taurine was used as the sole protein source. Feeding experiments were carried out twice at 20 °C by using different size of fish (average body weight: 0.3 g in Experiment I and 3.7 g in Experiment II). The feeding behavior of fish was observed throughout the experimental period. At the end of experiments, fish were killed for amino acids analysis.

The final average body weight and feed efficiency of juvenile Japanese flounder fed the T-1.5% diet was significantly higher than those of fish fed the T-0% diet in Experiments I and II. Abnormal feeding behavior such as multiple feeding while swimming in the water column was observed in the T-0% group in Experiment I. These findings indicate that taurine is essential for normal growth and development of normal feeding behavior of juvenile Japanese flounder.  相似文献   


18.
Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes of fish during fasting and after refeeding were investigated during the summer season. Groups of 25 fish each (initial body weight of 16 g) were randomly distributed into fifteen 180‐L flow‐through tanks. Fish were fed the experimental diet containing crude protein 46.9% and crude lipid 8.0% with estimated energy level of 14.6 kJ/g diet for 6 d/wk. Five treatments in triplicate were prepared for this study: C, S1, S2, S3, and S4. Fish in the control group (C) were hand‐fed to apparent satiation twice daily. Fish in treatments S1, S2, S3, and S4 experienced 1, 2, 3, and 4 wk of starvation and were then hand‐fed to apparent satiation twice daily during the remaining 7, 6, 5, and 4 wk of the experiment, respectively. A group of starved fish in the similar size was stocked and fasted throughout the 8‐wk feeding trial for chemical and blood analysis. The feeding trial lasted for 8 wk. Weight of fish linearly decreased with week of starvation (P < 0.0001). Linear relationship between condition factor (CF) and hepatosomatic index (HSI) against week of starvation was observed in the starved group of fish. Survival was not significantly (P > 0.05) affected by feeding strategy. However, weight gain and specific growth rate (SGR) of olive flounder in C, S1, and S2 were significantly (P < 0.05) higher than those of fish in S3 and S4. The poorest weight gain and specific growth rate (SGR) were obtained in fish of S4. Feed consumption of olive flounder in C, S1, and S2 was significantly (P < 0.05) higher than that of fish in S3 and S4. Feed efficiency, protein efficiency ratio, and protein retention of olive flounder in C and S1 were not significantly (P > 0.05) different from those of fish in S2 but significantly (P < 0.05) higher than those of fish in S3 and S4. Hematocrit, CF, and HSI of olive flounder were not significantly (P > 0.05) affected by feeding strategy. Chemical composition of fish was not significantly (P > 0.05) affected by feeding strategy. In considering these results, it can be concluded that juvenile olive flounder have the ability to fully compensate for 2‐wk feed deprivation during the summer season. Besides, feed efficiency in fish fed for 7 and 6 wk after 1‐ and 2‐wk feed deprivation was comparable to that in fish fed for 8 wk.  相似文献   

19.
A 10‐wk feeding trial to determine the effect of daily feeding ratio on growth and body composition of subadult olive flounder fed the extruded pellet (EP) was performed during the summer season. Thirteen flounder (an initial body weight of 319 g) per tank were distributed into fifteen 500‐L flow‐through tanks. Five treatments of feeding ratio in 5% decrement were prepared in triplicate: 100 (satiation), 95, 90, 85, and 80% of satiation. Fish in the control group (100% of satiation) were hand‐fed to apparent satiation twice a day. Then, feed allowance in the rest of the four groups was determined based on average feed consumption of fish in the control group. Weight gain of fish fed to 100% of satiation was significantly (P < 0.05) higher than that of fish fed to 85 and 80% of satiation but not significantly (P > 0.05) different from that of fish fed to 95 and 90% of satiation. Serum total protein, glucose, and glutamic pyruvic transaminase were not significantly (P > 0.05) affected by feeding ratio but triglyceride and glutamic oxaloacetic transaminase were. In considering these results, it can be concluded that optimum daily feeding ratio for growth of subadult olive flounder seemed to be 90% of satiation when fish were fed the EP twice a day during the summer season.  相似文献   

20.
在水温13~14℃下,将平均体质量(1.07±0.3)g的亚东鲑幼鱼养在100 cm×100 cm×60 cm圆形玻璃缸循环水系统中,密度为159尾/m3,水深约40 cm,投喂添加0%、0.1%、0.2%、0.5%、1.0%、1.5%和2.0%β-葡聚糖的饲料饲养60 d,研究β-葡聚糖对亚东鲑幼鱼存活及生长的影响....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号