首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenicity-related traits of biotrophic plant pathogens are usually measured on the individual host plant, at the scale of a single pathogen life cycle, whereas epidemic development in the field encompasses a succession of cycles. It remains unclear which traits make the greatest contribution to pathogen fitness in the field and to epidemic severity. The objective of this study was to determine the contributions of elementary pathogenicity traits to epidemic development in field conditions. We challenged a set of wheat cultivars with three different leaf rust isolates, under both controlled and field conditions, in 3 consecutive years. Infection efficiency, latent period, lesion size, spore production per lesion and spore production capacity were measured in the greenhouse, whereas disease severity was measured in the field. Most, but not all, of the pathogenicity traits were related to each other. All traits contributed to epidemic development in the field, but to different extents. Surprisingly, lesion size and spore production per lesion were inversely correlated with epidemic severity. Conversely, there was a strong positive correlation between spore production capacity and pathogen fitness in the field, in accordance with the concept of propagule pressure as a strong determinant of invasion success. Severe epidemics were mostly associated with small lesions with a high spore production capacity, high infection efficiency and a short latent period.  相似文献   

2.
Artificial pod inoculation was used to compare the relative aggressiveness of seven Colombian isolates of Moniliophthora roreri (the causal agent of moniliasis or frosty pod disease), representing four major genetic groupings of the pathogen in cacao (cocoa), when applied to five diverse cacao genotypes (ICS-1, ICS-95, TSH-565, SCC-61 and CAP-34) at La Suiza Experimental Farm, Santander Department, Colombia. The following variables were evaluated 9 weeks after inoculation of 2- to 3-month-old pods with spore suspensions (1·2 × 105 spores mL−1): (i) disease incidence (DI); (ii) external severity (ES); and (iii) internal severity (IS). IS was found to be of greatest value in classifying the reaction of the host genotype against M. roreri . Genetic variation reported between isolates and cacao genotypes was not matched by similar diversity in their aggressiveness. All isolates were generally highly aggressive against most cacao genotypes, with only two isolates showing reduced IS and ES reactions. There was considerable variation between clones in the IS and ES scores, but one cultivated clone (ICS-95) displayed a significant level of resistance against all seven isolates. This clone may be useful in cacao breeding initiatives for resistance to moniliasis of cacao.  相似文献   

3.
Existing theory suggests that increasing the diversity of resistance and virulence types in host–pathogen interactions will result in qualitative shifts in spatial and temporal dynamics, and greater among-population asynchrony in disease dynamics and prevalence. Here, data are presented from a biologically realistic metapopulation model of gene-for-gene interactions that indicate that population level variation in resistance diversity will be negatively associated with disease prevalence (fraction of individuals infected). The model also predicts that disease incidence (presence/absence) will be positively related to total resistance diversity across the metapopulation, because high resistance diversity also selects for more virulent pathogens. These results are then contrasted with empirical data from a natural host–pathogen system. While the argument that high resistance diversity should generally lead to lower disease levels has been applied extensively in agricultural situations, the connection between genetic diversity, resistance and disease dynamics has never been demonstrated in natural systems. Here, through analysis of multiyear data on disease prevalence in the context of knowledge of resistance variation among host populations in a natural plant host–pathogen metapopulation, the first evidence is provided that observed levels of asynchrony in disease dynamics may indeed be related to resistance structure.  相似文献   

4.
Calcium chloride (2% w/v) significantly inhibited the growth of the pathogen Rhizopus stolonifer , but did not affect the colony-forming units (CFU) of yeasts Candida guilliermondii and Pichia membranefaciens in potato dextrose broth. The concentration of yeast suspension influenced spore germination and germ tube growth of R. stolonifer in vitro, as well as disease incidence and lesion development in fruits. There were significant negative relationships between the suspension concentrations of the yeasts and the growth as well as infectivity of the pathogen. The addition of calcium resulted in lower spore germination rates and slower growth of germ tubes in vitro , as well as in lower disease incidences and smaller lesion diameters compared with treatments with yeast antagonists alone. When yeast cell suspensions reached a concentration of 5 × 108 CFU mL−1, growth of the pathogen was completely limited in vitro , and no infection was found in peach and nectarine fruits treated with or without calcium.  相似文献   

5.
ABSTRACT To test the hypothesis that host-related differences in the genotypic composition of populations of the late blight pathogen Phytophthora infestans can be explained by differential pathogenicity, the aggressiveness of isolates of the pathogen collected in France from potato and tomato was measured on detached leaflets of potato (cv. Bintje) and tomato (cv. Marmande). A preliminary trial with four isolates (two each from potato and tomato) showed that lesion appearance and development were similar for each isolate in detached leaflets and in whole plant tests in growth cabinets. Isolates collected from tomato were more pathogenic to tomato than isolates collected from potato. This was particularly the case for isolates belonging to the A2 mating type. Isolates originating from potato had a higher infection efficiency and a higher sporulation capacity on this host, but they induced lesions that generally spread more slowly than those caused by isolates from tomato. Extensive variation for components of aggressiveness on potato, and to a lesser extent on tomato, was observed in collections of isolates from each of the two hosts. Competition experiments between one potato isolate and one tomato isolate in field plots of the susceptible potato cv. Bintje clearly demonstrated the higher competitive fitness of the potato isolate on its host of origin. Therefore, differential pathogenicity to potato and tomato certainly contributes to the differentiation between P. infestans populations present on potato and tomato in France; however, additional factors, possibly related to survival ability or random genetic drift, are probably also involved and may explain the persistence of weakly pathogenic isolates in these populations.  相似文献   

6.
The Linum marginale–Melampsora lini plant–pathogen interaction has been studied extensively with regard to its epidemiology and population genetic structure (host resistance and pathogen virulence) in a natural metapopulation. In this study, this system was used in an experimental metapopulation approach to investigate explicitly how the distance (degree of isolation) between local population patches influences disease dynamics within a growing season, as well as the genetic structure of pathogen populations through stochastic colonization and extinction processes. The experimental design centred on four replicate sets of populations, within which patches were spaced at increasingly greater distances apart. Each patch consisted of an identical set of host and pathogen genotypes, with each pathogen genotype having the ability to attack only one of four host-resistance types. Over the 2 years of the experiment, the results showed clear 'boom-and-bust' epidemic patterns, with the strongest determinant of disease dynamics within a growing season being the identity of particular host–pathogen genotypic combinations. However, there were also significant effects of spatial structure, in that more isolated patches tended to exhibit lower levels of disease during epidemic peaks than patches that were close together. Extinction of pathogen genotypes from individual populations was positively related to the severity of disease during preceding epidemic peaks, but negatively related to the level of disease present at the final census prior to overwintering. The probability of recolonization of pathotypes into populations during the second growing season was most strongly related to the distance to the nearest neighbouring source population in which a given pathotype was present. Overall, these results highlight the importance of spatial scale in influencing the numerical and genetical dynamics of pathogen populations.  相似文献   

7.
8.
A population study of Ascochyta rabiei from the Canadian prairies was conducted to assess pathogenicity among isolates with the objectives to investigate the existence of a race or pathotype structure and to evaluate whether there had been a shift to higher aggressiveness between 1998 and 2002. Ninety-nine isolates collected in 1998, 2001 and 2002 were inoculated onto seven differential chickpea genotypes. Significant isolate × differential interactions occurred, but accounted for a small proportion of the total variability. It was found that very few interaction effects between all combinations of differentials and isolates were significant and frequency distributions of disease severity of isolates tested on the differentials revealed continuous distributions. These results suggest that no genotype-specific relationship existed between A. rabiei and its host and that Canadian populations of the pathogen cannot be objectively classified into races or pathotypes. Isolates from 2001 and 2002 caused significantly more disease than isolates from 1998, suggesting that disease epidemics encountered since 1999 were in part caused by a shift in the population to higher aggressiveness.  相似文献   

9.
Lannou C 《Phytopathology》2001,91(5):500-510
ABSTRACT A model was developed and used to study the consequences of diversity for aggressiveness within pathotypes on pathogen evolution in two-component and four-component cultivar mixtures. It was assumed that, within a pathotype, a proportion of the isolates would have higher or lower spore efficacy than the average on a given host genetic background. Two situations were examined in which the pathogen can have either independent or negatively correlated values for spore efficacy on different cultivars. In the latter case, a pathogen genotype more aggressive than the average on a host genotype was always less aggressive on other host genotypes. In the simulations, isolates with greater aggressiveness relative to a host genotype were selected for and increased in frequency. However, because simple pathotypes always reproduced on the same host genotype whereas complex pathotypes were able to grow on several hosts, selection was faster for simple pathotypes. Pathotypes with two different levels of diversity for aggressiveness were compared with nondiversified pathotypes. In order to make comparisons, the effect of a 5 and 10% cost of virulence on the development of complex pathotypes was simulated. In general, increased diversity within pathotypes reduced the rate of increase of complex pathotypes in host mixtures, and this effect was stronger with greater frequencies of autodeposition of pathogen spores.  相似文献   

10.
The genetic variability and aggressiveness of Brazilian Erwinia psidii isolates from Eucalyptus spp. was studied and compared with reference isolates from guava (Psidium guajava). Repetitive element sequence (rep)-based PCR markers of 101 isolates from Eucalyptus spp. and five from guava showed that the populations of E. psidii displayed a relatively low genetic variability. No correlation of genetic clustering based on rep-PCR analysis with geographic origin or host of origin was observed, indicating that genome rearrangements associated with adaptation to a particular host were not detected by these molecular markers. A higher genotypic richness was detected in the Mato Grosso do Sul population, probably reflecting a pathogen dissemination associated with the recent expansion in eucalypt plantations. Wilcoxon and ANOVA tests of disease severity data indicated differences in aggressiveness among isolates and an isolate × clone interaction. The area under the disease progress curve (AUDPC) and disease severity for some isolates were significantly different between two susceptible clones tested. Notably, isolate LPF681 from guava was not able to cause disease on a susceptible Eucalyptus urophylla clone, suggesting that some co-evolution between pathogen and host has taken place. The variability in aggressiveness and virulence among isolates of E. psidii observed in this study will be important for the establishment of appropriate screening approaches to select for disease resistance.  相似文献   

11.
In the absence of a gene-for-gene relationship between a pathogen and its host, knowledge about aggressiveness is crucial to characterize novel pathogen populations that potentially emerge in agricultural pathosystems. Information about pathogen aggressiveness is also critical when establishing representative panels of pathogen isolates to test host resistance and in mapping quantitative trait loci involved in the host resistance. In this study, we focused on the fungus C. gloeosporioides that causes necrosis on the aerial part of one of its host plants, Dioscorea alata, and identified the in vitro conditions required to assess fungal aggressiveness on this host. Our main purpose was to convert the necrosis area development into a unique index for quantifying pathogen aggressiveness. The ??Ag?? index described here has two advantages. First, it integrates the variance of symptom evolution curves to estimate the lesion development rates (initial and secondary) and the maximal necrosis area. Secondly, the new index takes two different symptoms commonly observed when inoculating D. alata leaves with C. gloeosporioides into account, one correlated with high leaf colonisation efficiency and the other with low colonisation efficiency. The weights accorded to each symptom in the index were proportional to leaf colonisation efficiency. We propose a framework for the acquisition of this index that has been designed to be conveniently combined with the routine bioassays required to establish representative panels of pathogen isolates. The general framework for the construction of this index can be broadly applied to diseases with necrotic symptoms.  相似文献   

12.
Potato late blight, caused by Phytophthora infestans, is a major disease in potato production throughout the world. In southern Sweden, hairy nightshade (Solanum physalifolium), an alternative non-crop host to the pathogen, is an increasing weed problem. Single-lesion leaves infected by P. infestans were collected from potato and hairy nightshade to determine phenotypic and genotypic population differentiation of P. infestans between the two hosts. Genotypic variation was estimated using microsatellites as markers. The results showed no genotypic differentiation in the samples between the two hosts. Aggressiveness tests were performed using the sampled isolates to cross-inoculate potato and hairy nightshade. The proportion of infected leaves, latency period, lesion growth rate, and sporulation capacity were measured. For isolates from hairy nightshade, the odds of infection were higher on both hosts combined. When tested on potato leaves, isolates from hairy nightshade showed a significantly shorter latency period and higher sporulation capacity compared with isolates from potato. This indicates that an alternative host can filter populations of P. infestans toward a higher aggressiveness, which could lead to increasing problems in controlling potato late blight.  相似文献   

13.
Several formae speciales of Fusarium oxysporum are capable to produce disease in tobacco plants. Different authors have classified those isolates as a forma specialis or a race within on the basis of the severity of disease and host specificity. Fusarium wilt of tobacco plant in Extremadura (central Spain) tobacco fields have been recorded in the last years and F. oxysporum was isolated from symptomatic plants. The aim of our study was to characterize these F. oxysporum populations. For this purpose, the in vitro spore production and growth and the virulence (severity of disease) have been tested. Although all isolates behaved as pathogen, the virulence of isolates was different. The differences in growth could not be correlated with other characteristics but the two isolates with scarce spore production have also behaved as the weakest pathogen. We have analyzed intergenic spacer (IGS) region polymorphism of ribosomal DNA and random amplified polymorphic DNA (RAPD) markers to assess the genetic diversity within F. oxysporum isolates. These molecular analyses showed two major groups with different physiological capabilities that could reflect two different lineages. One group was characterized by medium–high sporulation, high virulence and the same IGS-RFLP pattern. The other group was more heterogeneous featuring low–medium sporulation and variable virulence and growth. This first experimental approach to pathogen population could be a good starting point for further studies including non-pathogenic isolates and a larger number of pathogen that could clarify if there are two or more genetic lineages.  相似文献   

14.
The extent of variation in aggressiveness, growth and pigmentation in culture, phytotoxin production and fatty acid profile were determined in a population of 55 isolates of Cercospora piaropi, a fungus used as a biocontrol agent of the aquatic weed water hyacinth (Eichhornia crassipes). Besides differences in the colour of mycelium and diffusible pigments in culture, isolates of C. piaropi grown under standard conditions differed significantly in their ability to produce the phytotoxin cercosporin, as well as in aggressiveness and growth rate. A positive correlation existed between the ability of the isolates to produce cercosporin and their aggressiveness, and a negative correlation between growth rate and cercosporin production or growth rate and aggressiveness. Based on thin‐layer chromatographic separation of extracts and comparison with beticolin‐1, used as a standard, there was no evidence of production of beticolins. In discriminant analysis, fatty acid methyl ester (FAME) profiles had low resolution for differentiating populations among isolates of the fungus, and the level of resolution was influenced by the age of the colonies. Diffusible pigments in culture and cercosporin production are useful adjuncts to aggressiveness screening for choosing the most effective isolate of C. piaropi for biological control.  相似文献   

15.
Colletotrichum kahawae is a specialized plant pathogen of arabica coffee in Africa, able to infect green berries. The economic impact of this pathogen means there is an urgent need to better understand its pathogenic lifestyle, in particular its aggressiveness. In this study, several quantitative traits including disease severity, latent period and incubation period were measured to concomitantly assess the aggressiveness of 26 C. kahawae isolates. The results show that the area under disease progression curve is the most informative variable, particularly when joined together with the index disease intensity 10 days after inoculation and latency period, while the incubation period is not a reliable trait to distinguish aggressiveness levels in C. kahawae. This study also confirms the suitability of hypocotyls and detached green berries to perform C. kahawae aggressiveness assays, revealing that hypocotyls are a more reproducible testing material. Based on isolate profiles, three aggressiveness classes were established (high, moderate and low). A cytological analysis of representative isolates from each class showed that aggressiveness can be related to the development of post-penetration stages, rather than conidia germination and appressoria differentiation. This study provides, for the first time, the best metrics to evaluate C. kahawae aggressiveness, characterizing the profile of a broad range of isolates, and defining a set of parameters that can be used to classify new isolates. Furthermore, the collected information will contribute to the improvement of coffee breeding programmes, through the selection of tester isolates for prescreening of resistant coffee materials, and offers the opportunity to engage on future genotype–phenotype studies.  相似文献   

16.
The aggressiveness of four Phytophthora infestans isolates collected from wild and cultivated potato species (sect. Petota ) and the level of resistance of nine Petota species were assessed in the highland tropics of Ecuador. For this, isolates of P. infestans were inoculated on whole plants of Petota species in the field and net house and six epidemiological components – infection frequency (IF), incubation period (IP), latent period (LP), lesion size (LS), lesion growth rate (LGR), and relative area under the lesion expansion curve (RAULEC) – were measured during a single infection cycle. Additionally, host specificity was determined by testing for a significant host by pathogen interaction using the same components. The results showed significant differences among isolates of the EC-1 clonal lineage for IP, IF, and RAULEC. Significant differences among isolates were not found for the other components measured. There were significant differences in resistance among the accessions of Petota hosts tested. RAULEC, LGR, LP, and LS were in general more adequate in differentiating among the more resistant and more susceptible accessions but the importance of each component varied with host species. There was slight and inconsistent evidence for the existence of host specificity in some isolates of Petota hosts. IP was the only component for which a significant host by isolate interaction was observed and in most cases the isolates had the greatest aggressiveness on their hosts of origin.  相似文献   

17.
Quambalaria shoot blight, caused by the fungal pathogen Quambalaria pitereka, is a serious disease of eucalypt plantations in Australia. The aggressiveness of four Q. pitereka isolates was compared on a range of host genera, species, provenances and clones. Isolates differed substantially in their aggressiveness, with two consistently showing higher levels of aggressiveness based on incidence and severity of disease and lesion size. Isolates derived from Corymbia citriodora subsp. variegata (Ccv) and C. torelliana were shown to have a relatively restricted host range, with lesions but no sporulation found on Eucalyptus species, Angophora species other than A. costata and Corymbia species other than Ccv, the host of origin. The level of aggressiveness toward the different provenances of spotted gum and C. torelliana varied between isolates and there was evidence of some isolate × host interaction within provenances of Ccv. The two methods of inoculation used in this study, spray and spot inoculation, gave similar results. However, the fact that the spot inoculation method was labour‐intensive was a disadvantage limiting the numbers of isolates and hosts that can be tested.  相似文献   

18.
Selection within populations of Phytophthora infestans was investigated by comparing the aggressiveness of single‐lesion isolates on detached leaflets of four potato cultivars with differing levels of race‐nonspecific resistance to P. infestans. The isolates included 23 representative of Northern Ireland genotypes from the early 2000s, used to inoculate previously reported field trials on competitive selection (2003–2005), plus 12 isolates recovered from the 2003 trial. The cultivars were those planted in the previous trials: Atlantic (blight‐susceptible) and Santé, Milagro and Stirling (partially resistant). Very highly significant variation for latent period, infection frequency and lesion area was found between genotypes and cultivars; differences between genotypes were more marked on the more resistant cultivars, but no one genotype was the most aggressive across all. Detached leaflets were also inoculated with mixtures of isolates from each genotype group at three sporangial concentrations: differences in aggressiveness between genotypes were more apparent at lower concentrations and on the more resistant cultivars. Genotype groups that were the most aggressive on the more resistant cultivars tended to be those selected by the same cultivars in the field. A mixture of all isolates of all genotypes was used to inoculate detached leaflets of the same cultivars. With one exception, single spore isolates recovered from any one leaflet belonged to a single genotype, but different genotypes were recovered from different cultivars. Phytophthora infestans isolates from Northern Ireland showed significant variation for foliar aggressiveness, and pathogen genotypes exhibited differential aggressiveness to partially resistant cultivars and interacted competitively in genotype selection.  相似文献   

19.
Pyrenophora semeniperda, an important pathogen in Bromus tectorum seed banks in semi‐arid western North America, exhibits >4‐fold variation in mycelial growth rate. Host seeds exhibit seasonal changes in dormancy that affect the risk of pathogen‐caused mortality. The hypothesis tested is that contrasting seed dormancy phenotypes select for contrasting strategies for increasing pathogen fitness, and that increased fitness on nondormant seeds involves a resource trade‐off between toxin production and growth. The strategy for successfully attacking rapidly germinating nondormant seeds at high inoculum loads in autumn involves increased post‐infection aggressiveness to prevent seed escape through germination. An earlier study demonstrated that slow‐growing strains caused higher mortality than faster‐growing strains on nondormant host seeds at high inoculum loads. In this study, production of the toxin cytochalasin B was significantly higher in slower‐growing strains, and was induced only in seeds or in seed‐constituent‐containing media. Its production was reduced in vivo by Bromus tectorum seeds, suggesting direct involvement in pathogenesis on seeds. Fast‐growing strains caused significantly higher mortality than slow‐growing strains at low inoculum loads on dormant seeds, which apparently have resistance that is overcome at high loads or through rapid mycelial proliferation. In a co‐inoculation study, the fast‐growing isolate produced 3 × more stromata than the slow‐growing isolate on dormant seeds, whereas the slow‐growing isolate was twice as successful on nondormant seeds. These results provide evidence that mycelial growth rate variation and associated variation in cytochalasin B production represent a trade‐off maintained through temporally varying selection resulting from seasonal variation in host seed dormancy status.  相似文献   

20.
The capacity of Phytophthora ramorum to colonize the inner bark of 18 native and two exotic tree species from the Iberian Peninsula was tested. Living logs were wound-inoculated in a growth chamber with three isolates belonging to the EU1 and two to the NA1 clonal lineages of P. ramorum . Most of the Quercus species ranked as highly susceptible in experiments carried out in summer, with mean lesion areas over 100 cm2 in Q. pubescens , Q. pyrenaica , Q. faginea and Q. suber and as large as 273 cm2 in Q. canariensis , ca . 40 days after inoculation. Quercus ilex ranked as moderately susceptible to P. ramorum , forming lesions up to 133 cm2 (average 17·2 cm2). Pinus halepensis and P. pinea were highly susceptible, exhibiting long, narrow lesions; but three other pine species, P. pinaster , P. nigra and P. sylvestris , were resistant to slightly susceptible. No significant difference in aggressiveness was found between the isolates of P. ramorum . In addition, there was evidence of genetic variation in susceptibility within host populations, and of significant seasonal variation in host susceptibility in some Quercus species. The results suggest a high risk of some Iberian oaks to P. ramorum , especially in forest ecosystems in southwestern Spain, where relict populations of Q. canariensis grow amongst susceptible understory species such as Rhododendron ponticum and Viburnum tinus . One isolate of P. cinnamomi used as positive control in all the inoculations was also highly aggressive to Iberian oaks and Eucalyptus dalrympleana .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号