共查询到20条相似文献,搜索用时 15 毫秒
1.
Linhua WANG 《干旱区科学》2018,10(6):921-931
Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1-R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1-R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period. 相似文献
2.
3.
1,3‐Dichloropropene (1,3‐D), which consists of two isomers, (Z)‐ and (E)‐1,3‐D, is considered to be a viable alternative to methyl bromide, but atmospheric emission of 1,3‐D is often associated with deterioration of air quality. To minimize environmental impacts of 1,3‐D, emission control strategies are in need of investigation. One approach to reduce 1,3‐D emissions is to accelerate its degradation by incorporating organic amendments into the soil surface. In this study, we investigated the ability of four organic amendments to enhance the rate of degradation of (Z)‐ and (E)‐1,3‐D in a sandy loam soil. Degradation of (Z)‐ and (E)‐1,3‐D was well described by first‐order kinetics, and rates of degradation for the two isomers were similar. Composted steer manure (SM) was the most reactive of the organic amendments tested. The half‐life of both the (Z)‐ and (E)‐isomers in unamended soil at 20 °C was 6.3 days; those in 5% SM‐amended soil were 1.8 and 1.9 days, respectively. At 40 °C, the half‐life of both isomers in 5% SM‐amended soil was 0.5 day. Activation energy values for amended soil at 2, 5 and 10% SM were 56.5, 53.4 and 64.5 kJ mol?1, respectively. At 20 °C, the contribution of degradation from biological mechanisms was largest in soil amended with SM, but chemical mechanisms still accounted for more than 58% of the (Z)‐ and (E)‐1,3‐D degradation. The effect of temperature and amendment rate upon degradation should be considered when describing the fate and transport of 1,3‐D isomers in soil. Use of organic soil amendments appears to be a promising method to enhance fumigant degradation and reduce volatile emissions. Published in 2001 for SCI by John Wiley & Sons, Ltd 相似文献
4.
Gita Kulshrestha Shashi B Singh Shashi P Lal Nanjapur T Yaduraju 《Pest management science》2000,56(2):202-206
The effect of long‐term application of pendimethalin in a maize–wheat rotation on herbicide persistence was investigated. Pendimethalin was applied at 1.5 kg AI ha−1 separately as one or two annual applications for five consecutive years in the same plots. Residues of pendimethalin were determined by gas chromatography. Harvest‐time residues of the herbicide decreased gradually over the years and at the end of five years less than 3% of applied pendimethalin was recovered from soil as against 18% in the first year. Residues were found distributed in the soil profile up to 90 cm depth at the end of the experiment with peak distribution of 0.03 µg g−1 in the surface layer of soil treated with 10 herbicide applications. The minimum distribution was, however, in the deepest soil (75–90 cm) profile. Some of the metabolites of pendimethalin ie dealkylated pendimethalin derivative, partially reduced derivative and cyclized product were also traced in surface and sub‐surface soils up to 90 cm. A study of the rate of degradation of pendimethalin in field‐treated soils under laboratory conditions revealed faster degradation compared to control soils. Only the surface soil (0–15 cm) showed this enhanced degradation of the herbicide, which could be due to the adaptability of the aerobic micro‐organisms to degrade pendimethalin. Microbes capable of degrading herbicide were isolated, identified and pendimethalin degradation was confirmed in nutrient broth. © 2000 Society of Chemical Industry 相似文献
5.
干旱区盐碱地覆膜滴灌条件下土壤基质势对糯玉米生长和灌溉水利用效率的影响 总被引:12,自引:0,他引:12
利用埋在滴头正下方0.2m深度的真空表负压计,通过控制土壤基质势下限(-5,-10,-15,-20,-25kPa),研究盐碱地覆膜滴灌条件下土壤基质势对糯玉米(中糯1号)的生长、产量形成过程和灌溉水利用效率的影响。2005和2006年的试验结果表明:糯玉米的株高、茎粗、叶面积指数、地上部分干物质积累量、叶绿素含量等都随着土壤基质势的升高而增加,土壤基质势越高,糯玉米鲜食果穗产量越高,果穗性状也越好;土壤基质势在-5kPa时,糯玉米产量最高;土壤基质势在-10~-15kPa时,灌溉水利用效率最高。 相似文献
6.
利用人工模拟降雨试验,研究不同降雨强度下,不同农业耕作措施坡地水土流失特征。试验设计的坡地坡度分别为5°和15°,降雨强度分别为60、90、120 mm·h-1;耕作措施分别为等高耕作、人工掏挖和人工锄耕,以相同坡度的平整坡地作为对照。结果表明:(1)随着降雨强度的增大,各耕作措施坡地产流量显著增大1.51倍以上,最大增加幅度为等高耕作坡地的2.28倍。而坡地产沙量在降雨强度较小时增加不显著,当降雨强度增大到120 mm·h-1时,坡地产沙量显著增大;(2)与平整坡地相比,等高耕作在3个降雨强度下都具有明显的减流效益,减流量均大于15%,而人工锄耕和人工掏挖却不明显;(3)在5°坡地上,等高耕作和人工掏挖在3个降雨强度的减沙效益均大于25%,而人工锄耕减沙效益不明显;在坡度为15°、降雨强度为60 mm·h-1和90 mm·h-1时,人工锄耕和人工掏挖减沙效益与降雨强度关系无明显规律,在降雨强度为120 mm·h-1时,3个耕作措施都不能有效降低坡地产沙量。可见,水土保持农业耕作措施具有降低坡地产流量的作用,而对于坡地产沙的作用存在明显差异,在大坡度和大降雨强度下,不仅不能降低坡地产沙,反而加剧坡地土壤流失。 相似文献
7.
Dimitrios G Karpouzas Allan Walker Donald S
H Drennan Robert J Froud‐Williams 《Pest management science》2001,57(1):72-81
Carbofuran was incubated in top‐soil and sub‐soil samples from a pesticide‐free site at a range of initial concentrations from 0.1 to 10 mg kg−1. Amounts of the incubated soils were removed at intervals over the subsequent 12 months, and the rate of degradation of a second carbofuran dose at 10 mg kg−1 was assessed. An applied concentration as low as 0.1 mg kg−1 to top‐soil resulted in more rapid degradation of the fresh addition of carbofuran for at least 12 months. The degree of enhancement was generally more pronounced with the higher initial concentrations. When the same study was conducted in sub‐soil samples from the same site, an initial dose of carbofuran at 0.1 mg kg−1 resulted in only small increases in rates of degradation of a second carbofuran dose. However, degradation rates in the sub‐soil samples were, in many instances, considerably greater than in the corresponding top‐soil samples, irrespective of pre‐treatment concentration or pre‐incubation period. Initial doses of 0.5 mg kg−1 and higher applied to sub‐soil successfully activated the sub‐soil microflora. Application of the VARLEACH model to simulate carbofuran movement through the soil profile indicated that approximately 0.01 mg kg−1 of carbofuran may reach a depth of 70 cm 400 days after a standard field application. The results therefore imply that adaptation of the sub‐soil microflora (c 1 m depth) by normal field rate applications of carbofuran is unlikely to occur. In experiments to investigate this in soils exposed to carbofuran in the field, there was no apparent relationship between top‐soil exposure and degradation rates in the corresponding sub‐soils. The results further confirmed that some sub‐soil samples have an inherent capacity for rapid biodegradation of carbofuran. The high levels of variability observed between replicates in some of the sub‐soil samples were attributed to the uneven distribution of a low population of carbofuran‐degrading micro‐organisms in sub‐surface soil. There was no apparent relationship between soil microbial biomass and degradation rates within or between top‐soil and sub‐soil samples. © 2001 Society of Chemical Industry 相似文献
8.
Rimao Hua Niels H Spliid Kirsten Heinrichson Bente Laursen 《Pest management science》2009,65(8):857-861
BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3‐isopropyl‐1H‐2, 1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] was measured in columns with sandy loam soil with or without the addition of a non‐ionic surfactant, octylphenol ethylene oxide condensate (Triton X‐100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X‐100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X‐100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non‐ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution. Copyright © 2009 Society of Chemical Industry 相似文献
9.
不同灌溉制度对机采棉水分运移、产量及品质的影响 总被引:1,自引:0,他引:1
通过2012年南疆地区机采棉膜下滴灌大田试验,以蒸发量为灌水控制指标,研究了灌水频率和灌水量对土壤水分及棉花产量和品质的影响,进而分析了不同灌溉制度的节水、增产和调质效果。结果表明:相同灌溉频率下,土壤剖面上含水率随着灌水量的增加而增加;相同灌溉量下,灌水频率为5 d时在膜下0~60 cm土层的平均土壤含水率较高;不同灌溉制度对棉花水分利用效率和灌溉水利用效率的影响具有显著差异,当灌水频率为5 d和作物-蒸发皿系数为0.6时,棉花的水分利用效率和灌溉水利用效率分别达到1.96 kg·m-3和3.08 kg·m-3,可实现棉花生产的节水、高产和优质。 相似文献
10.
11.
Qing Li Ma Patrick T Holland Trevor K James Donald E McNaughton Anis Rahman 《Pest management science》2000,56(2):159-167
Rates of degradation and adsorption of acetochlor [2‐chloro‐N‐ethoxymethyl‐6′‐ethylaceto‐o‐ toluidide] and terbuthylazine [N 2‐tert‐butyl‐6‐chloro‐N4‐ethyl‐1,3,5‐triazine‐2,4‐diamine] in a Horotiu sandy loam soil (Typic Orthic Allophanic) were determined under controlled temperature and soil moisture regimes. These were then combined with site‐specific soil properties and climatic conditions in the Pesticide Root Zone Model (PRZM‐3) to predict dissipation and leaching of the herbicides in the field. PRZM‐3 significantly under‐estimated dissipation of both herbicides in the field using parameters derived from the laboratory incubation studies. When these parameters were derived from the field trials, PRZM‐3 adequately predicted dissipation of both herbicides using a two‐rate dissipation sub‐model but under‐predicted the dissipation when a simpler single‐rate sub‐model was used. Earlier‐than‐expected appearance of both herbicides in sub‐soil layers were postulated to result from the non‐equilibrium adsorption/transport of the herbicides and preferential flow, which cannot be simulated by PRZM‐3. © 2000 Society of Chemical Industry 相似文献
12.
13.
The deposit pattern of foliar‐applied agrochemicals, and its relation to their bio‐efficacy, has major practical importance. Thus, in our experiments, we evaluated the relevance of the deposition properties of glyphosate for its bio‐efficacy. The deposition pattern of glyphosate monodroplets was influenced by using surfactant and by applying the droplets with or without kinetic energy to the plant foliage. Monodroplets (1 μL) of glyphosate, formulated with or without ethoxylated rapeseed oil surfactant (RSO) having on average 5, 10, 30 or 60 ethylene oxide units (EO), as well as one commercial glyphosate product (CGP), were applied either by carefully placing the droplet on the foliage with a pipette (kinetic energy assumed to be near zero) or by a monodroplet generator (with kinetic energy). We selected two easy‐to‐wet (Stellaria media and Viola arvensis) and two difficult‐to‐wet (Chenopodium album and Setaria viridis) weed species as target plants. The deposit structure was determined using a scanning electron microscope with energy dispersive x‐ray microanalysis. The kinetic energy of the droplet had no consistent effect on the deposit structure or the bio‐efficacy of glyphosate formulations. In contrast, surfactants differing in EO unit, affected both the deposit structure and the bio‐efficacy of the formulations, depending upon the species. In easy‐to‐wet species, the increase in EO unit of RSO surfactant failed to affect the deposit area of glyphosate and its bio‐efficacy. However, in difficult‐to‐wet species, the increase in EO unit of RSO surfactant reduced the deposit area of glyphosate and enhanced its bio‐efficacy. 相似文献
14.
为合理评估除草剂异唑草酮的环境风险,在实验室模拟条件下,研究了异唑草酮在土壤 (红壤土)表面光解以及在不同质地土壤 (潮土、水稻土和红壤土) 中的降解和淋溶特性。结果表明:异唑草酮在土壤表面的光解遵循一级反应动力学方程ct = 4.23e–0.008t (r = 0.937),半衰期为82.5 h;其在潮土、水稻土和红壤土中的降解均符合一级动力学方程,好氧条件下,异唑草酮在3种土壤中的降解半衰期分别为10.5、43.3和139 h,厌氧条件下的降解半衰期分别为19.4、18.4和158 h;其在潮土、水稻土和红壤土中的淋溶系数 (Rf) 分别为0.417 0、0.083 3和0.083 3。研究表明:异唑草酮在土壤表面光解速率较慢,而在土壤中好氧及厌氧条件下降解速率均较快,残留期短;其在土壤中淋溶性较弱,不易对周围环境及地下水造成污染风险。 相似文献
15.
Rupak Paul Rajvir Sharma Gita Kulshrestha Shashi Bala Singh 《Pest management science》2009,65(9):963-968
BACKGROUND: Metsulfuron‐methyl is a low‐application‐rate sulfonylurea herbicide that is widely used to control broad‐leaved weeds in wheat. Owing to its persistent nature, its residues may be present at phytotoxic levels for the next crop in rotation. Therefore, a comparative evaluation of HPLC and bioassay techniques was made for the analysis of this herbicide in wheat field soil. RESULTS: Metsulfuron‐methyl was applied to wheat crop at different rates (4, 8 and 12 AI ha?1) at 28 days after sowing as a post‐emergence application, and the soil was analysed for metsulfuron‐methyl residues by HPLC and lentil seed bioassay techniques. The bioassay was found to be the more sensitive technique. At the recommended rate of application, 4 g AI ha?1, the bioassay technique could detect the residue up to 30 days in surface soil, while, with HPLC, residues were not detectable on the 15th day. The half‐lives of metsulfuron‐methyl by HPLC and bioassay were calculated as 6.3–7.8 and 17.5 days respectively. Under field conditions, residues of metsulfuron‐methyl were also detected in subsurface soil by the bioassay technique at trace levels, but were not detected by the solvent extraction/HPLC method. CONCLUSION: Lentil seed bioassay is a more sensitive technique than HPLC. Traces of residues detected in subsurface soil indicated the mobility of metsulfuron‐methyl into lower layers. Copyright © 2009 Society of Chemical Industry 相似文献
16.
17.
A route for the immobilization of 2,4‐dichlorophenoxyacetic acid (2,4‐D) on silica gel has been developed. In the first step the precursor was prepared by reacting the silylating agent 3‐(trimethoxysilyl)propylamine with silica gel. Nitrogen analysis of this anchored compound showed the presence of 1.16 mmol of amine groups per gram of support. The herbicide was covalently bonded to the amine groups previously anchored onto silica gel. Infrared, [13C] and [29Si] NMR spectra supported the reaction between the nitrogen of the amine group of the anchored silica with the carbon on the para‐position of the aromatic ring of 2,4‐D. The reaction yield, 90.3%, was confirmed through elemental analysis. © 2000 Society of Chemical Industry 相似文献
18.
Peach fruit fly (PFF), Bactrocera zonata, is one of the most dangerous pests of horticultural crops worldwide. This pest spends part of its life cycle in the soil as pre-pupae and pupae. Therefore, the effects of soil type and soil water content levels (SWCLs) on pupal mortality rates of the PFF were studied in an attempt to use soil moisture as an abiotic management strategy for this pest. The effect of clay, loamy, and sandy soils with SWCL of 0, 10, 25, 50, 75, 90, and 100% of field capacity on three ages of PFF pupae (newly formed, 4- and 7-day-old pupae) were studied. Results demonstrated significant effects of SWCLs on pupal mortality rates of PFF. SWCL was the factor with the most remarkable effect (48.47%), meanwhile soil type had a feeble effect (0.65%). Newly formed pupae were more susceptible to SWCL levels than 7- and 4-day-old pupae. Results suggest that sustaining SWCL near 100% of field capacity significantly (p?=?0.000) suppressed PFF population; therefore it could be an important component of Integrated Pest Management against this insect species. 相似文献
19.
Zhiyong Zhang Weili Shan Qiu Jian Wencheng Song Yan Shen Xianjin Liu 《Pest management science》2014,70(1):97-102
20.