共查询到20条相似文献,搜索用时 15 毫秒
1.
A glycoprotein α‐amylase inhibitor from Withania somnifera differentially inhibits various α‐amylases and affects the growth and development of Tribolium castaneum 下载免费PDF全文
Sainath S Kasar Kiran R Marathe Amey J Bhide Abhijeet P Herwade Ashok P Giri Vijay L Maheshwari Pankaj K Pawar 《Pest management science》2017,73(7):1382-1390
2.
3.
4.
Zhaojun Han Yinchang Wang Qiansong Zhang Xianchun Li Guoqing Li 《Pest management science》1999,55(4):462-466
Dynamics of pyrethroid resistance in a field population of cotton bollworm (Helicoverpa armigera) was demonstrated by continuous monitoring with twin discriminating dosages, and the influencing factors were also experimentally analysed. Resistance in a field population in China increased rapidly in the 3rd and 4th generations when population density became higher and insecticides were applied repeatedly, then decreased suddenly during over-wintering and slowly in the 1st and 2nd generations when insecticide spraying was suspended. Resistance increase could be countered by dilution as a result of immigration of susceptible moths from corn fields, which were found to be a natural refuge for this pest in China. The reduction of resistance during over-wintering and the 1st and 2nd generations was affected by the lower fitness of resistant cotton bollworms to low temperature and disadvantages in reproduction. The possibilities of managing the resistance in field populations on the basis of these observations are discussed. © 1999 Society of Chemical Industry 相似文献
5.
6.
7.
8.
9.
Three cDNA clones for cytochrome P450s, CYP6B2, CYP6B6 and CYP6B7 which have 84–87% protein sequence identity have been isolated previously from Helicoverpa armigera, and the CYP6B7 mRNA was found to be over-expressed in a pyrethroid-resistant field population. Subsequent analysis has shown that over-expression is observed in a majority of individuals in all populations tested. Single-pair crosses between resistant and sensitive individuals indicated that the pyrethroid resistance co-segregated with the over-expression of this mRNA. Southern analysis indicated that the over-expression, which was confined to midgut only in many insects, was not related to gene amplification. These observations add weight to the conclusion that CYP6B7 is the cytochrome P450 form involved in pyrethroid resistance, and that over-expression of cytochrome P450 CYP6B7 is a common cause of pyrethroid resistance in H. armigera. The results suggest that specific probes for CYP6B7 protein or mRNA could provide the basis for the development of tools for monitoring pyrethroid resistance due to mixed function oxidase activity in field populations of this insect. © 1998 Society of Chemical Industry 相似文献
10.
11.
12.
Janusz Popawski Boena ozowicka Alina T Dubis Barbara Lachowska Zbigiew Winiecki Jan Nawrot 《Pest management science》2000,56(6):560-564
All isomers of α‐asarone [(E)‐4‐prop‐1‐enyl‐1,2,5‐trimethoxybenzene] were tested for their feeding deterrent activity against adults of Sitophilus granarius and Tribolium confusum and larvae of Trogoderma granarium and Tribolium confusum. (E)‐2‐prop‐1‐enyl‐1,3,5‐trimethoxybenzene exhibited the strongest deterrent activity against all the species tested. The total coefficients of deterrency for this compound were 140.6 and 169.7 for Tribolium confusum adults and larvae, respectively, and 144.9 and 104.6 for larvae of Trogoderma granarium and adults of Sitophilus granarius, respectively. © 2000 Society of Chemical Industry 相似文献
13.
14.
Everton M. Silva Arnubio Valencia Maria Ftima Grossi-de-S Thales L. Rocha rika Freire Jos E. de Paula Laila S. Espindola 《Pesticide biochemistry and physiology》2009,95(3):141-146
A total of 185 hexanic, dichloromethanic, ethanolic and hydroethanolic extracts from 24 species of Cerrado plants, were tested against Zabrotes subfasciatus, Acanthoscelides obtectus, and human saliva α-amylases. Twelve crude extracts presented inhibition rates greater than 80% against digestive α-amylases of the insect pest Z. subfasciatus, at a concentration of 1 mg mL−1. These extracts were also tested against A. obtectus and human saliva α-amylases to verify their affinity and specificity of action. The hydroethanolic Kielmeyera coriacea stem bark extract presented a strong inhibitory potential, with IC50 values of 110 μg mL−1 for Z. subfasciatus and 272.12 μg mL−1 for A. obtectus, in addition to a 97.09% reduction in enzyme activity of human saliva α-amylases at 125 μg mL−1. The hexanic Aspidosperma macrocarpon root wood extract totally inhibited the activity of Z. subfasciatus α-amylases, reduced the enzyme activity of A. obtectus by 14.69% at 1 mg mL−1, but did not alter the activity of human saliva α-amylases, thus characterizing greater inhibition affinity and specificity. The results suggest that the application of plant extracts against insect α-amylases represent a promising biotechnological tool for development of new insect pest control strategies, with noticeable affinity and specificity of action against different target enzymes. 相似文献
15.
16.
Callose and β‐1,3‐glucanase inhibit Phytophthora cinnamomi in a resistant avocado rootstock 下载免费PDF全文
N. van den Berg J. B. Christie T. A. S. Aveling J. Engelbrecht 《Plant pathology》2018,67(5):1150-1160
Phytophthora root rot (PRR) of avocado, caused by Phytophthora cinnamomi, is a significant threat to sustainable production wherever the crop is grown. Resistant rootstocks in combination with phosphite applications are the most effective options for managing this disease. Recently, the mechanisms underpinning PRR resistance have been investigated by the avocado community. Here, biochemical assays and confocal and scanning electron microscopy were used to investigate early defence responses in PRR resistant and ‐susceptible avocado rootstocks. Zoospore germination and subsequent hyphal growth for the pathogen were significantly inhibited on the surface of resistant avocado roots. When penetration occurred in the resistant R0.06 rootstock, callose was deposited in the epidermal cells, parenchyma and cortex of roots. In addition, β‐1,3‐glucanase was released early (6 h post‐inoculation, hpi) in response to the pathogen, followed by a significant increase in catalase by 24 hpi. In contrast, susceptible R0.12 roots responded only with the deposition of lignin and phenolic compounds incapable of impeding pathogen colonization. In this study, PRR resistance was attributed to a timely multilayered response to infection by P. cinnamomi. 相似文献
17.
18.
19.