首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Cséleny    F. Ordon  W. Friedt 《Plant Breeding》1998,117(1):23-26
The inheritance of durable resistance of selected spring barley varieties to Rhynchosporium secalis was investigated. Data from the F2 generation of a 4 × 4 diallel, without reciprocals and the F4 generation of three crosses selected out of this diallel, suggest that resistance in this sample of varieties tested is complex in inheritance. Significant additive effects were detected indicating that the resistance level of barley cultivars may be improved by the hybridisation of suitable varieties. However, the genes conferring resistance seem to be concealed by the expression of one completely dominant resistance gene in our set of varieties. These results are partly in conflict with previous results on the inheritance of resistance to R. secalis in the breeder's line ‘11258/228613A’ indicating that the effectiveness of this resistance gene may be greatly influenced by the genetic background of the current population of R. secalis.  相似文献   

2.
Genetic analyses of heading date, tiller number, plant height, grain yield, kernel weight, and plump and thin kernels were made in three six-rowed barley crosses (Hordeum vulgare L.) involving four cultivars. Six populations, P1 , P2 , F1 , F2 , BC1 , and BC2 , from each cross were grown and evaluated at Fargo and Prosper, North Dakota, 1982. Parental means within crosses generally were different except for tiller number. Comparison of generation means suggested that late heading was dominant to early, high kernel weight was dominant to low, and kernel plumpness was influenced by additive gene action. The relationship between yield and heading date was not consistent among crosses and positive r values were quite low. It should be possible to select early maturing, high yielding segregates with plump kernels. Heterosis over the mid-parent was quite similar among crosses for heading date, but there was no heterosis over the high parent. Inbreeding depression was fairly constant for heading date, but was less consistent for yield. The lack of uniformity for estimates of inbreeding depression can be related to environmental variation and to its influence on type of gene action. The ratio of additive to dominance variance was inconsistent among crosses for heading date and yield. These data suggest selection for these characters should be delayed past the F 2 generation. Broad sense heritabilities for heading date ranged from 42 to 86%. Values obtained for grain yield were more consistent among broad sense than narrow sense estimates. Genetic advance estimates were low due to lack of additive variance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Most genes for resistance to barley leaf scald map either to the Rrs1 locus on the long arm of chromosome 3H, or the Rrs2 locus on the short arm of chromosome 7H. Other loci containing scald resistance genes have previously been identified using lines derived from wild barley, Hordeum vulgare ssp. spontaneum. A single dominant gene conditioning resistance to scald was identified in a third backcross (BC3F3) line derived from an Israeli accession of wild barley. The resistance gene is linked to three microsatellite markers that map to the long arm of chromosome 7H; the closest of these loci, HVM49, maps 11.5 cM from the resistance gene. As no other scald resistance genes have been mapped to this chromosome arm, it is considered to be a novel scald resistance locus. As the Acp2 isozyme locus is linked to this scald resistance locus, at 17.7 cM, Acp2 is assigned to chromosome 7H. Molecular markers linked to the novel scald resistance gene, designated Rrs15, can be used in breeding for scald resistance.  相似文献   

4.
Quantitative trait loci (QTLs) controlling salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) were identified by interval mapping analysis using marker information from two doubled haploid (DH) populations derived from the crosses, Steptoe/Morex and Harrington/TR306. Interval mapping analysis revealed that the QTLs for salt tolerance at germination in the DH lines of Steptoe/Morex were located on chromosomes 4 (4H), 6(6H), and 7(5H), and in the DH lines of Harrington/TR306 on chromosomes 5(1H) and 7(5H). In both DH populations, the most effective QTLs were found at different loci on chromosome 7(5H). Genetic linkage between salt tolerance at germination and abscisic acid (ABA) response was found from QTL mapping. The QTLs for the most effective ABA response at germination were located very close to those for salt tolerance on chromosome 7 (5H) in both crosses. The QTLs for salt tolerance at the seedling stage were located on chromosomes 2(2H), 5(1H), 6(6H), and 7(5H) in the DH lines of Steptoe/Morex, and on chromosome 7(5H) in the DH lines of Harrington/TR 306. Their positions were different from those of QTLs controlling salt tolerance at germination, indicating that salt tolerance at germination and at the seedling stage were controlled by different loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Doubled-haploid breeding systems are typically based on sampling gametes from F1 plants. However, in the case of repulsion linkages, additional recombination could be advantageous. Pre-selection of gamete donors might also shift progeny performance in a desired direction. The objectives of this study were to quantify the effects of an additional round of recombination and assess the effectiveness of pre-anthesis selection in the production of barley doubled haploids. Assessments were conducted on: 1. 100 F1-derived lines representing a subset of lines used in previous genome-mapping studies; 2. 100 random F2-derived lines; and 3. 50 F2-derived lines from gamete donors selected for early heading. An additional round of recombination had only a modest effect on generating more favourable genotypes. Pre-anthesis selection was ineffective in generating an earlier heading population. According to published quantitative-trait locus (QTL) analyses based on the F1 -derived population, there are few repulsion linkages between QTL determining the traits measured in this experiment. Any advantages to be gained from postponing the generation of derivation of doubled haploids must be weighed against the delay and additional cost.  相似文献   

6.
The inheritance of resistance to powdery mildew was investigated in 20 accessions of Hordeum spontaneum and in 20 F4 lines derived from crosses between the variety ‘Aramir’ and 13 accessions of H. spontaneum. Two resistance genes were detected in 17 accessions, and three resistance genes in one accession. In two accessions, only one resistance gene was present. The 20 breeding lines showed a large variation in infection type and infection level. The genetic relationship between the resistance genes detected was investigated in the seven most resistant F4 lines. These F4 lines were divided into three groups which carried different resistance genes. In two lines, the detected resistance gene was shown to be race-specific.  相似文献   

7.
A. Kuczy&#;ska    M. Surma    Z. Kaczmarek    T. Adamski 《Plant Breeding》2007,126(4):361-368
The aim of the study was to evaluate the relationship between genetic and phenotypic distances of parents and the genetic potential of crosses as measured by the frequency of transgressive segregants in homozygous populations. Material for the study involved 17 barley cross‐combinations. In each cross, the parental genotypes, F2 hybrids and doubled haploid (DH) lines were analysed. Yield and yield‐related traits were observed in the experiments. Phenotypic (univariate and multivariate) and genetic distances (GD) were investigated between pairs of parental genotypes. Genetic distance was evaluated by using random amplified polymorphic DNA markers. In F2 generations, the genetic coefficient of variability (GCV) was evaluated. Within all the cross‐combinations studied, each DH line was compared with both parents to distinguish the positive and negative transgressive lines. In addition, the coefficient of gene distribution (r) along parental genomes was evaluated. Relationships between frequency of transgression and both phenotypic and GDs, GCV and r, were assessed by regression analysis. It was found that for all the traits studied the frequency of transgressive lines depended mainly on gene distribution (r). Genetic distance between parents appeared to be significant for the occurrence of transgression effects in plant height, ear length, grain weight per ear and grain yield per plot. Regression analysis has shown that phenotypic differences between parental genotypes were also important for the frequency of transgressive lines. A weak relationship was found between the variation of F2 hybrids and the occurrence of transgressive lines. The results indicate that occurrence of transgressive segregants in a homozygous population should be considered as a phenomenon dependent simultaneously on several factors characterizing parental genotypes. Among them, the most important are: gene distribution, phenotypic diversity and GD.  相似文献   

8.
Hill plots offer advantages in testing large germplasm arrays with limited area and seed. However, the relationship of trait expression between hill vs. row plots remains in question. The development of quantitative-trait-locus (QTL) analysis offers alternative methods of testing hypotheses regarding levels of coincident gene effects in divergent plots. The objective of this study was to compare hill and row plots in terms of QTL detection, number of common QTLs and plot-type-specific QTLs for various characters in barley. Assessments were based on sets of 100 F1-derived doubled haploid progeny from two environments of hill-plot data and two sets of multiple-environment row-plot data. Common large-effect QTLs for height, heading date, and 1000-kernel weight were detected in both plot types. Fewer QTLs were detected in the hill-plot data, with only one QTL detected for grain yield. There were no hill-plot-specific QTL effects. Hill plots appear to be best suited to highly heritable characters such as height, heading date, and 1000-kernel weight. Evaluation of grain yield is best deferred until larger experimental units can be employed.  相似文献   

9.
The Japanese barley cultivar, ‘Chikurin Ibaraki 1’, is partially resistant to the PAV serotype of barley yellow-dwarf virus (BYDV), but its induced mutant line, Ea52, is susceptible. The inheritance of resistance in cv. ‘Chikurin Ibaraki 1’ to BYDV-PAV was investigated. The F, and F2 plants of crosses of cvs ‘Chikurin Ibaraki 1’, Ea52, ‘Vixen’, carrying the Yd2 gene of resistance, and ‘Plaisant’, a susceptible French cultivar, were tested in growth chamber and field conditions. Isolate RG, against which ‘Chikurin Ibaraki 1’ is partially resistant in growth chamber and field conditions, and isolate 2t, which overcomes the partial resistance of ‘Chikurin Ibaraki 1’ in field conditions (Chalhoub et al. 1994) were used. The segregation of F2 plants of crosses between ‘Chikurin Ibaraki 1’ and the susceptible cultivars to isolate RG (one resistant to three susceptible) suggests that the resistance of ‘Chikurin Ibaraki 1’ is controlled by a single recessive gene. All 537 F2 plants of ‘Chikurin Ibaraki 1’בVixen’ tested with isolate RG in growth chamber and field conditions were resistant. The F2 plants of this cross were all resistant to isolate 2t in growth chamber conditions but segregated with a ratio of one resistant to three susceptible in field conditions owing to the susceptibility of ‘Chikurin Ibaraki 1’ to this isolate. Results suggest that the resistance gene in ‘Chikurin Ibaraki 1’ is tightly linked or allelic with the Yd2 gene in ‘Vixen’. However, it differs from this gene in ‘Vixen’ in that it can be overcome by isolate 2t in field conditions.  相似文献   

10.
A restriction fragment length polymorphism (RFLP) based linkage map of a cross between two diploid Hordeum bulbosum (2n = 2x = 14) clones, PB1 and PB11, was constructed from 46 recombinant progeny clones. Since both parents are heterozygous, separate and combined parental maps were constructed. All of the RFLP markers screened had previously been mapped in barley (H. vulgare L.) so that comparative maps could be produced. The PB1 linkage map consists of 20 RFLP marker loci assigned to four linkage groups covering 94.3 cM. The PB11 linkage map consists of 27 RFLP marker loci assigned to six linkage groups covering 149.1 cM. Thirteen markers polymorphic in both parents were used as ‘anchors’ to create a combined linkage map consisting of 38 loci assigned to six linkage groups and covering a genetic distance of 198 cM. Marker order was highly conserved in a comparison with the linkage map of H. vulgare (Laurie etal., 1995). However, in contrast, the genetic distances for the same markers were very different being 649 cM and 198 cM respectively, a genetic distance ratio of 1: 3.3. Thus although the map was short, it can be presumed to cover half the genome of H. bulbosum. This study provides further confirmation of the close relationship between the two species and gives a basis for the development of marker mediated introgression through interspecific hybridisation between the two species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The greenbug, Schizaphis graminum (Rondani) is an extremely damaging aphid pest of barley (Hordeum vulgare L.) particularly in the southern Great Plains of the USA. The simply inherited, dominant resistance gene Rsg1 is in all greenbug‐resistant US barley cultivars. In this study, we conducted molecular mapping of Rsg1 using an F2:3 population derived from a cross between the greenbug‐resistant Post 90*4/R015 and susceptible CI2260 inbred lines. Segregation of host responses to greenbug biotype E infestation confirmed that a single dominant gene is responsible for greenbug resistance in Post 90*4/R015. Simple sequence repeat (SSR) markers evenly distributed along the seven barley chromosomes were employed for the construction of a framework genetic map. Linkage analysis placed the Rsg1 locus in the long arm of chromosome 3H (3HL) flanked by SSR markers Bmag0877 and GBM1420 that were 35 cM apart. Polymorphic single‐nucleotide polymorphism (SNP) markers in 3HL were identified from an Illumina GoldenGate SNP assay and used for targeted mapping to locate Rsg1 to an 8.4‐cM interval. Comparative analysis identified syntenic genomic regions in Brachypodium distachyon chromosome 2, in which 37 putative genes were annotated including a NB‐LRR‐type resistance gene homologue that may be a potential candidate gene for the Rsg1 locus of barley. Results from this study offer a starting point for fine mapping and cloning of this aphid resistance gene in barley.  相似文献   

12.
Identification of resistance gene analogs in cotton (Gossypium hirsutum L.)   总被引:4,自引:0,他引:4  
Sequence analyses of numerous plant disease resistance genes have revealed the presence of conserved motifs common to this class of genes, namely a nucleotide binding site (NBS) and leucine rich repeat region. In this study, thirty-three resistance gene analogs (RGAs) were cloned and sequenced from cotton (Gossypium hirsutum L.) following PCR with degenerate primers designed from the conserved NBS motif of plant resistance (R) genes. Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into four distinct classes from which several subgroups were delineated based on nucleic acid sequences. Gene database searches with the consensus protein sequences of each of the four classes and respective subgroups of cotton RGAs revealed their conserved NBS domains and homology to RGAs and known resistance genes from a variety of plant genera. Given the complete lack of knowledge regarding molecular organization of R genes in cotton, the cloned RGAs described here may be useful as probes to map, characterize, and manipulate R genes of the cotton genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Investigations were carried out to assess the suitability of the intergeneric cross Hordeum vulgare×Psathyrostachys fragilis for haploid barley production. H. vulgare cvs. ‘Emir’ and ‘Vada’ were each pollinated with P. fragilis P.I. 343192 and plants regenerated from embryos cultured on a modified B5 medium. Seed sets on ‘Vada’ were significantly lower than on ‘Emir’, and all the planes from ‘Vada’×P. fragile remained hybrid. Several of these flowered but there was little pairing between the parental chromosomes. Most of the plants from ‘Emir’×P. fragilis died, as seedlings but 3 plants developed into haploid barley. Because of the practical limitations of pollen availability from P. fragilis and the inconsistencies in haploid plant formation, it is unlikely that the cross will prove as valuable as that between H. vulgare×H. bulbosum for a doubled haploid barley programme.  相似文献   

14.
Septoria speckled leaf blotch (SSLB), caused by Septoria passerinii, has become one of the most serious diseases of barley in the Upper Midwest region of the USA. The recombinant line 36L5 derived from a backcross of the susceptible barley cultivar ‘Emir’ and a resistant Hordeum bulbosum parent Cb2920/4/Colch was found to be resistant to S. passerinii. Two doubled haploids derived from 36L5 were backcrossed to cv.‘Emir’ to obtain two BCF2 populations for determining the inheritance of resistance to S. passerinii. BCF2 progeny and BCF2:3 families were evaluated at the seedling stage in the greenhouse for reaction to S. passerinii. BCF2 progeny and BCF2:3 families from both crosses segregated 3 : 1 (resistant : susceptible), and 1:2:1 (resistant : segregating : susceptible), respectively, indicating that the H. bulbosum‐derived SSLB resistance is conferred by a single dominant gene. The H. bulbosum introgressions were positioned on chromosome 4HL by genomic and fluorescent in situ hybridizations (GISH and FISH, respectively) and by Southern hybridization with the rye repetitive sequence pSc119.2. These findings indicate that SSLB resistance in H. bulbosum has the potential to be transferred and utilized in barley breeding programs.  相似文献   

15.
G. Hahne  H. Lörz 《Plant Breeding》1987,99(4):330-332
Embryogenic callus cultures of barley (Hordeum vulgare L.) were frozen in the presence of a cryoprotector and subsequentjy stored in liquid nitrogen. After thawing, a high percentage of cultures resumed growth after a lag-period of 2–4 weeks. Plant regeneration was achieved at a frequency comparable to that observed in control cultures.  相似文献   

16.
While studying powdery mildew resistance in a recombinant line (code 81882) derived from a Hordeum vulgare (cv. ‘Vada’) ×Hordeum bulbosum hybrid, a low infection type of resistance to leaf rust was observed. To determine the mode of inheritance of the leaf rust resistance and whether there was linkage between the two resistances, F2 and F3 progenies from crosses between 81882 and ‘Vada’ were inoculated with the leaf rust and powdery mildew pathogens. Southern blots were prepared using restricted DNA extracted from leaves of 82 F2 plants and four chromosome 2HS sequences were hybridized with the blots to define the length of the introgression. The leaf rust resistance appears to be inherited as a single dominant gene on chromosome 2HS, which co-segregates with the powdery mildew resistance. There was an almost complete association between the resistances and the respective molecular markers, but it is likely that the strong linkage results from the frequent inheritance of the introgressed H. bulbosum DNA as an intact segment of chromatin with only low levels of recombination within the segment.  相似文献   

17.
GRAS基因家族是一类仅存在于植物并广泛参与其生长发育调控的转录因子,根据其序列结构和系统发育树分化特征,GRAS转录因子包含PATI,DELLA,HAM,SCR,SHR等多个亚家族成员.本研究利用大麦最新的基因组数据库,采用生物信息学的方法筛选鉴定出41条GRAS基因序列,其中有34条序列具有完整的GRAS家族蛋白特...  相似文献   

18.
Spot blotch caused by Bipolaris sorokiniana is an important disease in barley worldwide, causing considerable yield losses and reduced grain quality. In order to identify QTL conferring resistance to spot blotch, a highly diverse worldwide barley set comprising 449 accessions was phenotyped for seedling resistance with three isolates (No 31, SH 15 and SB 61) and for adult plant resistance at two locations (Russia and Australia) in two years. Genotyping with the 50 k iSelect barley SNP genotyping chip yielded 33,818 informative markers. Genome-wide association studies (GWAS) using a compressed mixed linear model, including population structure and kinship, revealed 38 significant marker-trait associations (MTA) for spot blotch resistance. The MTA corresponded to two major QTL on chromosomes 1H and 7H and a putative new minor QTL on chromosome 7H explaining between 2.79% and 13.67% of the phenotypic variance. A total of 10 and 14 high-confidence genes were identified in the respective major QTL regions, seven of which have a predicted involvement in pathogen recognition or defence.  相似文献   

19.
RFLP mapping of a new cereal cyst nematode resistance locus in barley   总被引:4,自引:1,他引:3  
Cereal cyst nematode (CCN) ( Heterodera avenae Woll.) is an economically damaging pest of barley in many of the worlds cereal growing areas. The development of CCN-resistant cultivars may be accelerated with the application of molecular markers. Three resistance genes against the pest have been mapped previously to chromosome 2 ( Ha 1, Ha 2 and Ha 3). In this study, a third gene present in the Australian barley variety 'Galleon' derived from the landrace 'CI3576' was located. Segregation analysis of CCN resistance data derived from doubled haploid populations of the cross 'Haruna Nijo'×'Galleon' identified a single major locus controlling CCN resistance in the variety 'Galleon'. This locus mapped to the long arm of chromosome 5H estimated to be 6.2 cM from the known function restriction fragment length polymorphism marker XYL (xylanase). While five genes for CCN resistance, including Ha2, have been mapped to group 2 chromosomes in the Triticeae, no gene other than Ha4 has been identified on group 5 chromosomes.  相似文献   

20.
M. J. Y. Shtaya    J. C. Sillero    K. Flath    R. Pickering    D. Rubiales 《Plant Breeding》2007,126(3):259-267
A set of 23 recombinant lines (RLs) of barley ( Hordeum vulgare L.) derived from H. vulgare  ×  H. bulbosum L. crosses was inoculated with barley leaf rust ( Puccinia hordei ) and powdery mildew ( Blumeria graminis f.sp. hordei ) at the seedling stage to identify their levels and mechanisms of resistance. Eight RLs were studied further in glasshouse and field tests. All three barley parents ('Emir', 'Golden Promise' and 'Vada') were highly susceptible to powdery mildew and leaf rust isolates. Several RLs showed partial resistance expressed as high relative latency periods and low relative infection frequencies against leaf rust. This high level of partial resistance was due to a very high level of early aborting colonies without host cell necrosis. Several RLs showed hypersensitive resistance to some or all isolates. For powdery mildew, one RL was completely resistant to the CC1 isolate and had a hypersensitive resistance to the CO-02 isolate. Three RLs derived from 'Emir' were completely resistant to both powdery mildew isolates, and three more RLs tested in the field had higher levels of partial resistance than their parents. The results indicate that H. bulbosum contains major and minor gene(s) for resistance to leaf rust and powdery mildew that can be transferred to cultivated barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号