首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite flours prepared from wheat, greengram, bengalgram and blackgram flours were studied for the preparation of biscuits. Protein content of biscuits increased as the level of the pulse flours increased. Wheat flour containing bengalgram and blackgram flours adversely affected the top grain, texture and colour of biscuits. Biscuits made with higher levels of bengalgram (more than 15%) were tough and difficult to break and required higher compression force. Addition of greengram flour did not significantly affect top grain, texture and colour of biscuits. The biscuits made from 15% greengram supplemented wheat flour scored the highest for flavour characteristics. Thickness, diameter and spread ratio of biscuits containing different levels of pulse flours were significantly different from control sample. Sensory evaluation scores showed that acceptable biscuits can be prepared from wheat flour supplemented with these pulse flours at a level of 15 percent.  相似文献   

2.
Wheat flour was separately substituted with fenugreek flour (raw, soaked, and germinated) at 5–20% levels for product making. Nutrient analysis of the blends, product development, and their acceptability were carried out. Replacement of wheat flour with fenugreek flour increased the protein, fat, lysine, minerals, and dietary fibre contents proportionately to the level of substitution. Among the composite flours, the blends containing germinated fenugreek flour were found superior in nutritional quality compared to others. However, products, viz., bread, biscuits, noodles, and macaroni prepared from the wheat–fenugreek blends at 10, 15, and 20% levels, were found organoleptically acceptable.  相似文献   

3.
Color and taste are permanent features of amala, a traditional thick paste obtained from yam chips flour. To assess these attributes, 23 yam chips presenting various quality attributes were processed. The sensory attributes of their derived amala were determined and some biochemical characteristics of yam flours measured. A panel defined five main taste attributes for amala: sweetness, bitterness, acidity, fermented, and roasted tastes. Amala color was measured instrumentally and sensory scores were highly correlated with flour biochemical analyses; amala sweetness was positively correlated with glucose and fructose content of the flour, whereas amala acidity and fermented taste were linked to organic acids and lactic acid contents of flour, respectively. In addition, darkness, bitterness, and roasted tastes of amala could be tightly predicted by multiple regression analysis from phenolic compound and glucose–fructose contents. Phenolic content of yam flour plays thus a key role on sensorial quality of amala. However, polyphenol oxidase and peroxidase activities were almost null in yam flours and their specific role on yam flour phenolic content needs to be clarified.  相似文献   

4.
Pumpkin seed products (raw, roasted, autoclaved,germinated, fermented, pumpkin protein concentrate and pumpkin proteinisolate) were incorporated into wheat flour to produce blends with proteinlevels of 15, 17, 19 and 21%. Dough properties were evaluated by afarinograph; loaves of breads were evaluated by a taste panel for crustcolor, crumb color, crumb texture, flavor, and overall quality. Resultsindicated that pumpkin seed products can be added to wheat flour up toa 17% protein level for raw, roasted and autoclaved pumpkin meal, 19%level for germinated, fermented and pumpkin protein concentrate and21% level for pumpkin protein isolate without a detrimental effecton dough or loaf quality. On the other hand, the addition of pumpkin seedproteins resulted in increasing protein, lysine and mineral contentscompared to the control. While lysine and tryptophan were the first andsecond limiting amino acids in the control bread, tryptophan and lysinewere the first and second limiting amino acids for raw, roasted, autoclaved,germinated and fermented pumpkin meal; valine and lysine and valine andtotal sulfur amino acids were the first and second limiting amino acids forpumpkin protein concentrate and isolate, respectively. In vitro protein digestibility improved when the pumpkin seed proteinswere added.  相似文献   

5.
In soft wheat breeding programs, the gluten strength of flours from specific genotypes is determined by various chemical and rheological tests. Based on such tests, the experimental wheat lines with very weak flour gluten are typically selected for the production of soft-dough biscuits, while the lines with medium gluten strength and extensibility are reserved for hard-dough biscuits. Often, the genotypes having high gluten strength are removed from such breeding programs. In the present study, the usability of the GlutoPeak tester on whole wheat flour samples was investigated for assessing the gluten strength of soft wheat breeding materials. In the study, 25 soft wheat genotypes, grown in seven locations for three years, were categorized by commonly used gluten-quality-related parameters. Based on the results of the study GlutoPeak whole wheat flour PMT values ranging from 30.0 to 50.0 s and AM values from 15.0 to 20.0 GPU were found to be suitable for soft-dough biscuit products, whereas the values between 40.0 and 60.0 s and 20.0 and 23.0 GPU were appropriate for hard-dough biscuit products. The genotypes exhibiting AM values > 24.0 GPU and PMT values > 60.0 s were judged to have too-strong gluten, and thus eliminated from the breeding program. The gluten aggregation energy (AGGEN), and the torque after the maximum torque (PM) values were only useful and applicable to flours for soft-dough products. The maximum torque (BEM) values were not effective in discriminating against the genotypes. The results of this study demonstrated that the GlutoPeak whole wheat PMT and AM parameters can be recommended as quick and accurate parameters especially for early generation screening with small-scale tests in soft wheat improvement programs.  相似文献   

6.
Air-classified wheat flour was dry-coated with microparticulated rice flour (30%, db) and/or microparticulated soybean hulls (up to 10%, db) using a hybridization system, and the physical properties of the dry-coated wheat flour were examined. The composite wheat flours exhibited the higher water-holding capacity but lower swelling power and oil-holding capacity than their counterpart mixtures. In pasting viscosity, the composites of wheat and rice flours had substantially lower values for peak viscosity and breakdown than did pure wheat flour. The incorporation of soybean hulls to the composites of wheat and rice flours further reduced the peak viscosity. The composites with rice flour and soybean hulls showed slightly higher melting (gelatinization) temperatures but lower melting enthalpy compared to the counterpart mixtures. By using the composite flours for the deep-fat fried doughnut preparation, the oil uptake could be substantially reduced by approximately 30%, in comparison to pure wheat flour or the mixture samples. The composite wheat flours with microparticulated rice flour and soybean hulls produced dough matrices with improved compactness and cell structure, which were attributed to the reduced fat uptake during frying.  相似文献   

7.
Air-classified wheat flour was dry-coated with microparticulated rice flour (30%, db) and/or microparticulated soybean hulls (up to 10%, db) using a hybridization system, and the physical properties of the dry-coated wheat flour were examined. The composite wheat flours exhibited the higher water-holding capacity but lower swelling power and oil-holding capacity than their counterpart mixtures. In pasting viscosity, the composites of wheat and rice flours had substantially lower values for peak viscosity and breakdown than did pure wheat flour. The incorporation of soybean hulls to the composites of wheat and rice flours further reduced the peak viscosity. The composites with rice flour and soybean hulls showed slightly higher melting (gelatinization) temperatures but lower melting enthalpy compared to the counterpart mixtures. By using the composite flours for the deep-fat fried doughnut preparation, the oil uptake could be substantially reduced by approximately 30%, in comparison to pure wheat flour or the mixture samples. The composite wheat flours with microparticulated rice flour and soybean hulls produced dough matrices with improved compactness and cell structure, which were attributed to the reduced fat uptake during frying.  相似文献   

8.
In vitro protein digestibility, chemical composition and selected functional properties of flours and protein concentrates prepared from raw, fermented and germinated fluted pumpkin (Telfairia occidentalis Hook) seeds were studied. Protein concentrates prepared by an alkaline extraction process had increased crude protein contents (61.5–70.8%) compared to flour samples (46.4–52.7%). The yields of protein concentrates ranged from 24.5% to 29.4% while values for protein recoveries varied between 64.8% and 65.2%. Protein concentrates also had increased foam volume and decreased foam stability (100% decrease over a 2 h period), compared to flour samples. Fermentation and germination were observed to significantly (p<0.05) lower polyphenol and phytic acid contents, but increased protein digestibility of fluted pumpkin seed flours and concentrates. Both raw flour and concentrate were significantly (p<0.05) higher in water absorption capacity than germinated or fermented flours and concentrates. Protein concentrates had comparatively better fat absorption properties than the flour samples. Hence protein concentrates may prove to have useful applications in ground meat formulations.  相似文献   

9.
Pinto beans were milled and then air-classified to obtain a raw high protein fraction (RHPF) followed by extrusion to texturize the protein fraction. The texturized high protein fraction (THPF) was then milled to obtain flour, and combined with wheat flour at 5, 10, and 15 % levels to make bread. The air-classification process produced flour with high concentration of lipids and phytic acid in the protein-rich fraction. However, extrusion significantly reduced hexane extractable lipid and phytic acid. However, the reduction observed may simply indicate a reduction in recovery due to bind with other components. Total protein and lysine contents in composite flours increased significantly as THPF levels increased in composite flour. Bread made with 5 % THPF had 48 % more lysine than the 100 % wheat flour (control). The THPF helped to maintain dough strength by reducing mixing tolerance index (MTI), maintaining dough stability and increasing departure time on Farinograph. Bread loaf volume was significantly reduced above 5 % THPF addition. THPF increased water absorption causing an increase in bread weights by up to 6 %. Overall, loaf quality deteriorated at 10 and 15 % THPF levels while bread with 5 % THPF was not significantly different from the control. These results support the addition of 5 % THPF as a means to enhance lysine content of white pan bread.  相似文献   

10.
The objective of this study was to investigate the feasibility of incorporating common buckwheat (Fagopyrum esculentum Moench) into instant noodle formulations. Australian Soft (AS) and Baker's flours were used to evaluate the effects of varying buckwheat contents (0–40%) on noodle quality. The results of texture analysis indicate that noodles made using AS flour produced softer texture whereas there was minimal effect for Baker's flour when buckwheat was incorporated. The colour, measured by L* values, decreased with increased addition of buckwheat for both flours. Fat uptake for noodle samples made from AS flour was only marginally affected, but increased for Baker's flour, when higher levels of buckwheat flour were added. The antioxidant rutin was detected in noodles made from both wheat flours, generally increasing with % buckwheat flour added. These findings indicate that the incorporation of 20% buckwheat into the formulation can be used to enhance the quality of instant noodles.  相似文献   

11.
Interest in tef [Eragrostis tef (Zucc.)Trotter] grain in food applications has increased in recent years because of its nutritional merits and the absence of gluten. With the objective of evaluating the suitability of tef for making gel type food products, gel viscoelastic properties of three varieties of tef (one brown and two white) at different concentrations (6, 8, 10, 12 & 14% w/w) were evaluated at 25 °C and 90 °C. The texture and color evolution for 16% (w/w) gels were evaluated. Proximate compositions of the flours were quantified. Rice, refined and whole wheat flours were analyzed as reference. The minimum flour concentration required for gel formation from the three tef varieties was 6–8%, similar to wheat flour. All tef flour suspensions pre-heated to 95 °C led to gels with a solid-like behavior (G′ > G″), both at 25 °C and 90 °C, with higher consistency than wheat gels at the same concentration. The dependence of viscoelastic moduli with concentration fulfilled the power law. The Avrami model was successfully fitted to the textural evolution of tef gels. Important differences were observed among tef and rice and wheat flours, probably contributed by their differences in protein, starch, lipid and fiber constituents. Gelling properties characterized suggest that tef flours would be suitable ingredients in gel food formulations.  相似文献   

12.
Full-fat African breadfruit flour was used to replace 30, 40, 50, 60 and 70% of sweet potato flour. The chemical composition and functional properties of composite flours showed that they contains more protein, fat, and ash and less carbohydrate than sweet potato flour. With increasing level of supplementation of breadfruit, ash, protein and fat contents increased while carbohydrate decreased. The composite flours possessed higher water absorption than sweet potato flour. The water absorption capacity increased from 20% for sweet potato flour to the range of 85–120% for composite flours. The oil absorption capacities for some composite flours were higher than that for sweet potato but less than that of breadfruit. Composite flours had good foaming capacity but lacked foaming stability. The bulk density of the composite flours was found to be low which will be an advantage in the preparation of weaning food formulations.  相似文献   

13.
Cowpeas and peanuts are legumes of major dietary and economic importance. They are favored worldwide because of their palatability, contribution to nutritional status, and low cost as a protein source compared to animal protein. Flours processed from cowpeas and peanuts have unique physico-chemical and sensory properties when used in composite flour mixtures. Appropriate blends of cowpea and peanut flours to replace wheat flour in Chinese-type noodles, muffins, and tortillas were determined using modelling and optimization procedures. For noodles, 15% peanut flour and 8% cowpea flour supplementation produced an acceptable product with high protein content (21%). For wheat flour replacement in muffins, up to 43% cowpea and up to 44% peanut flours may be used. However, when wheat flour replacement is 50% or greater, cassava flour should comprise 56 to 72% of the blend with a few exceptions. In tortillas, 24% cowpea and 46% peanut flours produced products similar in quality characteristics to those made from 100% wheat flour. The systematic approach used in these studies is more efficient than the traditional substitution method to optimize sensory qualities of wheat-based products containing composite flours.  相似文献   

14.
Wheat germ flour (WGF) has been developed as a functional food ingredient with high nutritional value. In this study, WGF was applied in steamed bread-making in order to improve the quality of Chinese steamed bread (CSB). Partial substitution of wheat flour with WGF at levels of 3%, 6%, 9% and 12% (w/w) was carried out to investigate physicochemical properties of blends and their steaming performance. Falling number (FN) values of composite flours ranged from 199 to 223 s. Viscosity analysis results showed that wheat flour mixed with WGF had higher pasting temperature and lower viscosities. Dough rheological properties were also investigated using farinograph and extensograph. The addition of WGF diluted the gluten protein in dough and formed weak and inextensible dough, which can be studied by scanning electron microscope (SEM) analysis. CSB made with WGF had significantly lower volume, specific volume and higher spread ratio. The sensory acceptability and physicochemical quality of CSB were improved with the application of a low level of WGF (3% and 6%). However, results showed that a high level of WGF over 9% is not recommended because of unsatisfactory taste. As a whole, addition of appropriate level of WGF in wheat flour could improve the quality of CSB.  相似文献   

15.
为明确食用胶在面制食品中的作用,以3种商业小麦粉(特一粉、富强粉、上白粉)为试验材料,分别添加不同比例的海藻酸钠、黄原胶、卡拉胶,分析其对面团流变学特性的影响。结果表明,小麦粉添加0.15%~0.25%的海藻酸钠,面团稳定时间显著提高,弱化度显著降低;添加0.10%、0.20%和0.25%的海藻酸钠,面团最大拉伸阻力显著提高。添加0.02%、0.06%和0.10%的黄原胶,面团最大拉伸阻力显著提高;添加0.10%黄原胶的面团拉伸面积也显著提高。添加0.10%的卡拉胶,面团稳定时间、拉伸面积显著提高,弱化度显著降低。食用胶因小麦粉品质不同对面团流变学特性的影响也不同,除添加0.25%的海藻酸钠外,其他添加量的3种食用胶均可降低特一粉的面团吸水率,提高上白粉的吸水率。研究认为,海藻酸钠、黄原胶、卡拉胶可显著改善小麦粉的面团流变学特性,增强面团筋力。  相似文献   

16.
The structural features of highMrglutenin subunits of wheat were compared with those of analogous proteins from rye. Subunits of two rye cultivars (Danko and Halo) and of the wheat cultivar Rektor were isolated from defatted flours by extraction with 50% (v/v) aqueous propan-1-ol under reducing conditions at 60°C followed by precipitation using a 60% concentration of propan-1-ol. The yields of dialysed and freeze-dried subunits were 0·33% and 0·32% (w/w of flour), respectively (rye cultivars), and 0·91% (Rektor). SDS–PAGE revealed that the rye cultivars contained at least five subunits with mobilities corresponding to the x-type subunits of wheat. Separation by RP–HPLC indicated that the rye cultivars did not differ in the qualitative composition of subunits, but in their quantitative proportions. The surface hydrophobicities of the rye subunits were significantly lower than those of wheat subunits. The amino acid compositions of single rye subunits were characterised by high contents of Glx, Gly and Pro, and they were closely related to those of wheat subunits, except that the Glx content was generally lower and the Cys content higher. Notable differences between rye and wheat subunits were found in their contributions to gluten strength. Whereas wheat subunits, reoxidised with potassium bromate and mixed with a standard wheat flour, caused a significant increase in gluten strength, reoxidised rye subunits had the opposite effect.  相似文献   

17.
Flour was prepared from seeds ofAfzelia africana dehulled by different treatments and used to replace 10, 20, 30, 40 and 50% wheat flour in biscuits and doughnuts. The composition and water and oil absorption properties of the flour blends were evaluated. The biscuits and doughnuts made from each flour blend were evaluated organoleptically. The composite flour containing the highest proportion (50%) ofA. africana seed flour contained the highest levels of protein and fat, exhibited the highest water absorption property but the lowest oil absorption capacity. Sensory scores showed high overall acceptability for products with a 10–30% level of substitution.  相似文献   

18.
Sound and sprouted flours (24 and 48 hr) from bread wheat (WL-1562), durum wheat (PBW-34) and triticale (TL-1210) were stored at room temperature (34.8°C) and relative humidity (66.7%) for 0, 45, 90 and 135 days to assess the changes in physico-chemical and baking properties. Protein, gluten, sedimentation value, starch and crude fat decreased during storage in all the samples; however, the decrease was more in sprouted flours. Free amino acids, proteolytic activity, diastatic activity and damaged starch decreased with increase in storage period. Total sugars and free fatty acids increased more rapidly in the flours of sprouted wheats during 135 days of storage. Loaf volume of breads decreased during storage in both sound and sprouted flour but the mean percent decrease in loaf volume was more in stored sound flours. Aging of sprouted flour for 45 days improved the cookie and cake making properties but further storage was of no value for these baked products.Chapati making properties of stored sound and sprouted flour were inferior to that of fresh counterparts.  相似文献   

19.
Hard and soft wheat flours, which were used in the study, resulted in good and poor quality chapatis respectively. Gluten was isolated and interchanged among the two whole wheat flours and studied by scanning electron microscopy for its influence on structural characteristics of dough and its relation to chapati-making quality. Microscopic observations clearly indicated that larger gluten strands covered starch granules in hard wheat flour dough, while gluten was short and starch granules exposed in dough prepared from soft wheat flour. Greater film forming ability of gluten in hard wheat flour dough manifested in long and bulky starch strands interwoven with protein matrix in its chapati crumb. Higher moisture retention and starch gelatinization as a consequence of greater film forming ability of gluten in hard wheat flour resulted in pliable and soft textured chapati.  相似文献   

20.
Physical modification of soy flour was shown to greatly improve the dough and baking qualities of soy–wheat (1:1) composite doughs, compared to raw soy flour, giving better stability and Rmax, although extensibility was still below that of the wheat dough.Reasons for improvements caused by the physical-modification process were sought by determining the relative size distribution of proteins in the soy–wheat composite doughs by size-exclusion high-performance liquid chromatography (SE-HPLC). Results were expressed as the proportion of ‘unextractable polymeric protein’ (%UPP)—the proportion of the protein that is over 100,000 Da and only extractable after sonication. Protein extracts from the soy–wheat dough were sampled at different stages of dough mixing and fermentation, and their molecular-size distributions evaluated.Unextractable soy proteins were lower in raw soy flour (only 8% UPP) than in two physically-modified soy flours (19 and 34% UPP, respectively). Unextractable polymeric protein was much greater for wheat flour (57% UPP). After mixing a 1:1 soy–wheat composite dough, the %UPP was 36 and 22 (for the two types) when made from physically modified soy flours, compared to 8 for a composite dough using raw soy flour, and 43 for a wheat-only dough. The higher proportion of UPP for the wheat-modified soy doughs was taken as a reason for this composite dough providing better dough and baking qualities. Prolonged fermentation time caused a decrease in UPP percentages for all composite doughs and for the wheat-only dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号