首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Microbial communities in floodplain soils are exposed to periodical flooding. A long-term submerged Eutric Gleysol (GLe), an intermediate flooded Eutric Fluvisol (FLe), and a short-time flooded Mollic Fluvisol (FLm) at the Elbe River (Germany) with similar organic carbon contents (Corg) between 8.1% and 8.9% were selected to test the quality of phospholipid fatty acids (PLFA), soil microbial carbon (Cmic), basal respiration (BR), metabolic quotient (qCO2), and Cmic/Corg ratio to characterize and discriminate these soils with microbial parameters.The three floodplain soils can be differentiated by Cmic and by total PLFA-biomass. Due to the different flooding durations and the time since the soils were last flooded Cmic and PLFA-biomass increase in the order GLe<FLe<FLm. Both parameters correlate significantly (r=0.999;p<0.05). The Cmic/Corg ratios are low in comparison to terrestrial soils and revealed the same ranking over the three soils like Cmic. Contrary, qCO2 and BR are highest in GLe and lowest in FLm according to inundation regime. The diminished Cmic, high BR, and high qCO2 values in GLe seem to be an unspecific response of aerobic soil microorganisms on the long flooding period and the resulting short time for developing after last flooding as well as the low pH value. Different plant communities and their residues may influence the microbial diversity additionally.The PLFA profiles were dominated by the group of saturated fatty acids that together constituted almost 62-72% of the total fatty acids identified in the soils. In GLe all groups of PLFA, inclusive monounsaturated fatty acids, are lowest and in FLm highest, while in FLe the PLFA fractions show an intermediary amount of the three soils. The FLm had most of the time aerobic conditions and revealed therefore the highest Cmic, PLFA-biomass, especially monounsaturated fatty acids, Cmic/Corg ratio as well as relatively low BR and qCO2 value. These indicate that microorganisms in FLm are more efficiently in using carbon sources than those in GLe and FLe.All 26 identified PLFA were found in FLe and FLm, while the polyunsaturated fungi biomarker 18:2ω6,9c could not be detected in GLe. In this long-time submerged soil the environmental conditions which microorganisms are exposed might be disadvantageous for fungi.  相似文献   

2.
It was emphasized by Russel (1934) that cation and polar-medium played the active part in the aggregation of preliminary particles. Jesse Elson pointed out that even the field which had raised crops for consecutive 32 years might yield a greater number of aggregates when fertilizers, especially manure and corn were given, than the field which had been given no fertilizers. It was confirmed by Mazurak that six year rotation, i. e. three year rotation of potato, oats or barkley and sugar beats preceeded by three year succession cropping of alfalfa, was more advantageous for the formation of water-stable aggregates than the succession cropping of potato. The effect of bactinal polysaccharide was pointed out by Geoghegan, and it was confirmed by Browing that the effect of sucrose would be two to four times greater than that of alfalfa, rye, vetch and wheat straw.  相似文献   

3.
Influence of boron (B) application to cauliflower (Brassica oleracea var. botrytis) was investigated in a pot experiment taking 15 Inceptisols with four levels of B. The critical levels of B for deficiency, adequacy and toxicity in soil and in cauliflower plant were also determined. Hot-calcium chloride (CaCl2) extractable B in these soils varied from 0.33 to 0.78 mg kg-1 and its content for deficiency to cauliflower was 0.48 mg kg-1. Boron application significantly increased cauliflower yield, plant B concentration and uptake of B. The critical plant B concentrations for deficiency, sufficiency and toxicity varied with the growth stages and the values being 26, 31 and 48 mg kg-1 at 50 days of growth and 17, 24 and 35.5 mg kg-1 at harvest, respectively. The study also recommends application of fertilizer B at the rate 0.9–4.5 kg ha-1 for optimum B nutrition to cauliflower in Inceptisols of the Gangetic plains of India.  相似文献   

4.
Abstract

Forest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history.  相似文献   

5.
冷却猪肉分别采用真空包装、CO+CO2+N2气调包装、高浓度O2+CO2+N2气调包装和低浓度O2+CO2+N2气调包装后,在(4±1)℃贮存至21 d,贮存过程中每周测定理化指标(pH值、TVB-N值、TBA值、汁液流失率),并进行感官评定。实验结果表明:1)CO-MAP是目前冷却肉保鲜方法中比较理想的一种,采用CO-MAP的冷却猪肉在21 d的贮存过程中,不仅TVB-N值和TBA值低,红色稳定,而且无任何异味。2)真空包装的冷却猪肉TVB-N值和TBA值也比较低,但色泽呈淡紫色,汁液流失率高。3)含氧气调包装中,冷却猪肉的TVB-N值和TBA值相对较高,特别是脂肪氧化加速,鲜红色泽1周后很快变为褐色,并有不良气味产生,但汁液流失率比较低,所以含氧包装仅适合保质期在1周以内的冷却猪肉。  相似文献   

6.
We developed and tested a new method to collect CO2 from the surface to deep layers of a peatland for radiocarbon analysis. The method comprises two components: i) a probe equipped with a hydrophobic filter that allows entry of peat gases by diffusion, whilst simultaneously excluding water, and, ii) a cartridge containing zeolite molecular sieve that traps CO2 passively. We field tested the method by sampling at depths of between 0.25 and 4 m at duplicate sites within a temperate raised peat bog. CO2 was trapped at a depth-dependent rate of between ∼0.2 and 0.8 ml d−1, enabling sufficient CO2 for routine 14C analysis to be collected when left in place for several weeks. The age of peatland CO2 increased with depth from modern to ∼170 BP for samples collected from 0.25 m, to ∼4000 BP at 4 m. The CO2 was younger, but followed a similar trend to the age profile of bulk peat previously reported for the site (Langdon and Barber, 2005). δ13C values of recovered CO2 increased with depth. CO2 collected from the deepest sampling probes was considerably 13C-enriched (up to ∼+9‰) and agreed well with results reported for other peatlands where this phenomenon has been attributed to fermentation processes. CO2 collected from plant-free static chambers at the surface of the mire was slightly 14C-enriched compared to the contemporary atmosphere, suggesting that surface CO2 emissions were predominantly derived from carbon fixed during the post-bomb era. However, consistent trends of enriched 13C and depleted 14C in chamber CO2 between autumn and winter samples were most likely explained by an increased contribution of deep peat CO2 to the surface efflux in winter. The passive sampling technique is readily portable, easy to install and operate, causes minimal site disturbance, and can be reliably used to collect peatland CO2 from a wide range of depths.  相似文献   

7.
孤雌生殖是西花蓟马(Frankliniella occidentalis)繁殖的一种重要方式。前期研究发现,西花蓟马在高温下,雌性的存活率远大于雄性。为探究高温处理后仅有雌性西花蓟马孤雌产雄的情况下其后代建立种群的可能性,试验设定:高温(45℃,2 h)处理西花蓟马单个雌性个体,分别进行孤雌产雄生殖后,雄性子代(F1代)与其母系回交产生F2代;高温(45℃,2 h)处理西花蓟马多个雌性个体,进行孤雌产雄生殖后,雄性子代(F1代)与亲代多个雌性个体共存情况下进行交配产生F2代。两组处理模式下建立F2代实验种群生命表。结果表明,上述两种处理模式,母代雌性个体与子代雄性个体交配后均可产生后代,雄性F1代与其母系回交产生的F2代的雌雄性比为1.05∶1;与亲代多个雌性个体共存下交配产生的F2代性比为1.55∶1。雄性F1代与其母系回交产生的F2代的平均单雌产卵量(F)和内禀增长率(rm)显著小于与亲代多个雌性个体共存下交配产生的F2代(P0.05);各龄期的平均发育历期、平均产卵前期和平均总产卵前期2个繁殖力参数以及净生殖率(R0)、平均世代周期(T)2个种群参数,前者则比后者长(P0.05);另周限增长率(λ)两者之间无显著差异。研究表明西花蓟马在孤雌产雄状态下仍然可以在短期建立种群,具有较强的抗高温能力和繁殖能力,为其成功入侵奠定了生态学基础。  相似文献   

8.
大气CO2浓度升高对谷子生长发育及玉米螟发生的影响   总被引:3,自引:2,他引:1  
人类活动导致全球大气CO_2浓度持续升高,研究大气CO_2浓度升高对C4作物谷子(Setaria italica)生长发育及虫害发生的影响,可以为谷子等C4作物制订应对气候变化栽培措施提供理论依据。本研究利用OTC(Open Top Chamber)系统,设两个CO_2浓度梯度(正常大气CO_2浓度、正常CO_2浓度+200μmol·mol-1)模拟CO_2浓度升高对谷子生长发育的影响。结果表明:大气CO_2浓度升高后,谷子净光合速率(Pn)、气孔导度(gs)、叶片蒸腾速率(Tr)和水分利用率(WUE)分别增加38.73%、27.53%、6.93%和40.56%;谷子叶片光系统Ⅱ最大光化学量子产量(Fv/Fm)和非光化学淬灭系数(NPQ)显著下降,光系统Ⅱ实际光化学量子产量(ΦPSII)和表观电子传递效率(ETR)显著增加,而对光化学淬灭系数(q P)无显著影响;此外,谷子株高、茎粗和小穗数分别增加3.41%、13.28%和13.11%;而叶重、茎重、千粒重、单株粒数和产量无显著变化,穗重和地上部分生物量分别显著下降12.8%和7.44%;大气CO_2浓度升高后,谷子灌浆期和收获期玉米螟(Ostrinia furnacalis)发生数量显著增加。大气CO_2浓度升高将有利于谷子的生长发育,但会增加玉米螟危害。  相似文献   

9.
In soil ecology, microbial parameters have been identified as sensitive indicators of changes in the soil environment. The Braunschweig FACE project provided the opportunity to study the effects of elevated CO2 (550 μmol mol−1) as compared to ambient CO2 (370 μmol mol−1) on total microbial biomass (Cmic), Cmic-to-Corg ratio and the fungal-to-bacterial respiratory ratio together with total Corg, Nt, C:N ratio and pH over a six-year period. Field management followed a typical crop rotation system of this region with either a crop-related full nitrogen supply (N100) or 50% reduced N supply (N50). The soil microbial parameters responded to the elevated CO2 treatment in varying intensities and time spans. The fungal-to-bacterial respiratory ratio was the most sensitive parameter in responding to an elevated CO2 treatment with highly significant differences to ambient CO2-treated control plots in the third year of CO2 fumigation. After six years bacterial respiratory activity had increased in ascending order to 34% in FACE-treated plots (N50 and N100) as compared to control plots. Soil microbial biomass (Cmic) responded more slowly to the FACE treatment with highly significant increases of >12% after the fourth year of CO2 fumigation. The Cmic-to-Corg ratio responded very late in the last two years of the CO2 treatment with a significant increase of >7.0% only in the N100 variant. Total Corg and Nt were slightly but significantly increased under FACE around 10.0% with ascending tendency over time starting with the second year of CO2 treatment. No significant FACE effects could be recorded for the C:N ratio or pH.These results suggest that under FACE treatment changes in the soil microbial community will occur. In our study the fungal-to-bacterial respiratory ratio was superior to total Cmic as microbial bioindicators in reflecting changes in the soil organic matter composition.  相似文献   

10.
La(NO3)3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响   总被引:2,自引:0,他引:2  
为探讨稀土元素镧(La)对牧草盐胁迫伤害的缓解作用, 采用水培法研究了叶面喷施20 mg·L-1La(NO3)3 对NaCl 胁迫下黑麦草幼苗生长及其抗逆生理特性的影响。结果表明: 盐胁迫显著抑制黑麦草幼苗的生长, 提高叶片电解质渗漏率及丙二醛(MDA)、O2- 和H2O2 含量, 其作用随盐浓度的增大而增强。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性蛋白质、脯氨酸含量随盐浓度增大呈先升后降趋势, 可溶性糖和Na+/K+比逐渐增大, 质膜H+-ATP 酶活性逐渐降低, 过氧化物酶(POD)活性及POD 同功酶数量表达增强。喷施La(NO3)3 处理可降低盐胁迫下黑麦草幼苗叶片的O2- 和H2O2 含量, 提高SOD、CAT、POD、APX 和质膜H+-ATP 酶的活性及POD 同功酶的表达, 使AsA、GSH、可溶性蛋白质、可溶性糖和游离脯氨酸含量及幼苗生物量增加, Na+/K+比降低。表明La(NO3)3 可通过提高抗氧化系统的活性和积累渗透溶质减轻盐胁迫伤害, 从而提高黑麦草的耐盐性。  相似文献   

11.
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2-12 °C)>Q10(12-22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2-12 °C)<Q10(12-22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature.  相似文献   

12.
13.
ABSTRACT

Legumes, including hairy vetch (Vicia villosa Roth), are widely used as green manures. They fix nitrogen (N) and provide the N to other crops when they decompose, and thus are considered alternatives for chemical N fertilizers. However, N-rich plant residues, including hairy vetch, are also sources of soil nitrous oxide (N2O) emissions, a greenhouse gas. On one hand, rice (Oryza sativa L. ssp. japonica) husk biochar is widely used as a soil conditioner in Japan and has been reported as a tool to mitigate soil N2O emissions. We conducted a soil core incubation experiment (1.5 months) to compare the N2O emissions during the decomposition of surface-applied hairy vetch (0.8 kg dried hairy vetch m?2 soil) under semi-saturated soil moisture conditions (~100% water-filled pore space (WFPS)), using two soil types, namely Andosol and Fluvisol. Throughout the incubation period, the use of biochar suppressed soil NH4+-N concentrations in Andosol, whereas the effect of biochar on NH4+-N was not clear in Fluvisol. Biochar increased the nitrate (NO3?-N) levels both in Andosol and Fluvisol, suggesting a negative influence on denitrification and/or a positive influence on nitrification. Biochar application did not influence the cumulative N2O emissions. Our study suggests that rice husk biochar is not a good option to mitigate N2O emissions during the decomposition of surface-applied hairy vetch, although this study was performed under laboratory conditions without plants. However, the trends of the inorganic-N concentration changes followed by the addition of hairy vetch and biochar were markedly different between the two soil types. Thus, factors behind the differences need to be further studied.  相似文献   

14.
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH 4 + -N were investigated in a grassland soil. Differences in these parameters, with the exception of NH 4 + , were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results.  相似文献   

15.
Protein and RNA induction during the germination of Inubie (Echinochloa oryzicola) seeds pretreated with CaCN2 was studied. It was observed that the germination of Echinochloa oryzicola seeds was delayed after pretreatment with a high concentration of CaCN2 for 18 h. A considerable difference in the protein patterns was detected in the SDS-PAGE gel between the control (H2O) and CaCN2 treatment, particularly a 48 kilodalton (kD) protein band disappeared in CaCN2 treatment. At the tested three levels of CaCN2, the induction of this 48 kD protein was apparently inhibited during the germination process even when the duration of the pretreatment was as short as 2 h. When imbibed with water, the amount of the 48 kD protein increased rapidly within 1 h from the trace level in the dry seeds, and reached the maximum level after about 1–2 d. The results showed that the CaCN2 treatment also decreased the total RNA level in the germinating seeds. The relation of this protein induction and RNA decline with the beginning of Echinochloa oryzicola germination was discussed.  相似文献   

16.
In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90°00′S 0) and Barrow (71°18′N, 156°47′W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 reflecting the beginning of the ozone depletion. Historical maximums of daily-integrated DNA weighted irradiance at South Pole (90°00′S, 0°00′) are about as large as summer maximums at San Diego (32°45′N, 117°11′W).  相似文献   

17.
P type humic acids showing characteristic absorption maxima at 615, 575, and 450 nm have been found in various types of soils around the world (3, 5, 7,8). P type humic acid was fractionated into a brown fraction (Pb) and a green fraction (Pg) by column chromatography using cellulose powder (4) or Sephadex gel (3). The Pg fraction which has a strong absorption maxima at 615, 575, and 450 nm causes the characteristic absorption pattern of P type humic acid.  相似文献   

18.
Using H2 15O as a tracer, the effect of the nutrient concentration on the water flow at the discrimination center (DC) of rice was monitored using a positron multi-probe system (PMPS). The maximum velocity of the water flow was achieved by the use of 20× Kasugai's culture solution. The addition of 0.01 to 0.1% NaCl gradually decreased the velocity. In intact plants, the ionic strength of essential elements in the xylem sap may be effective in decreasing the xylem resistance, resulting in the increase of the water flow in the xylem.  相似文献   

19.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

20.
外源NO对Ca(NO_3)_2胁迫下番茄叶片活性氧损伤的缓解效应   总被引:1,自引:0,他引:1  
为探讨外源一氧化氮(NO)对次生盐渍胁迫下植物抗氧化系统的调节作用,以番茄品种‘秦丰保冠’为试材,在营养液栽培条件下研究叶面喷施外源NO供体硝普钠(SNP)对80mmol·L~(-1)Ca(NO_3)_2胁迫下番茄幼苗生长、叶片光合、活性氧物质、抗氧化酶活性和抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响。结果表明,Ca(NO_3)_2胁迫下喷施SNP处理的番茄幼苗叶片超氧阴离子(O_2~(·-))的产生速率以及过氧化氢(H_2O_2)、丙二醛(MDA)、脱氢抗坏血酸(DHA)、氧化型谷胱甘肽(GSSG)的含量和电解质渗漏率显著降低,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDHAR)的活性显著升高或得以维持,同时叶片抗坏血酸(AsA)、谷胱甘肽(GSH)含量及其还原力(AsA/DHA、GSH/GSSG值)显著升高,叶片活性氧损伤得到有效缓解,叶绿素降解和光合速率的下降得到有效抑制,进而促进了植株的生长发育,提高了番茄幼苗的耐盐能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号