首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carotenoid concentration of durum wheat is a criterion for the assessment of semolina quality, and it is of particular importance in determining the color of pasta. Thus, the development of a rapid screening method for kernel and semolina color has facilitated increasing the yellow color in durum wheat cultivars. However, the distribution of the pigment might vary within the ear of the wheat. The micromethod for the determination of yellow pigment concentration (YPC) of single wheat kernels now allows the discovery of whether this variation is the same for cultivars with different carotenoid concentrations. All of the cultivars investigated showed similar trends in the arrangements of the kernels within the ears, with the central positions of the ears being the most stable for YPC. Indeed, the best combination of higher YPC and larger kernel size is seen for the basal‐central region of the ear, which can be used for the selection during wheat‐breeding programs of cultivars with a more intense yellow color.  相似文献   

2.
It is well known that gluten plays a major role in determining cooking quality in durum wheat pasta. This work is an attempt to systematically elucidate the role of gluten quantity and nature in determining cooking quality as a function of the drying cycle used in the manufacturing process. Gluten and starch were fractionated from two durum wheat cultivars possessing good and poor gluten quality. Either of them were then added back to the original base semolina to alter its protein content and to produce two semolina series with identical protein contents. Semolinas were processed into pasta and dried following three drying programs (low, medium, and high temperature). Cooking quality was determined with sensorial, chemical, and instrumental methods. The results indicate that optimum cooking time is governed by gluten quality. The positive effect on cooking quality of increasing gluten contents and of the application of HT drying is evident in weak gluten samples, but it is not significant in the strong gluten samples.  相似文献   

3.
Spaghetti was prepared by replacing either 5 or 10% semolina or farina with corn gluten meal, a high-protein fraction from the wet milling of corn, to increase the protein content of pasta. Spaghetti fortified with corn gluten meal had a similar cooked weight and cooking loss but was less firm compared with the control. The overall flavor quality score of the spaghetti decreased with the increasing additions of either water-washed, water/ethanol-washed or regular corn gluten meal because of the higher intensity of the fermented flavor. Spaghetti with acceptable quality can be prepared with 5% water/ethanol-washed corn gluten meal, thereby improving its nutritional value while providing an additional market for corn gluten meal.  相似文献   

4.
Commercial durum wheat (Triticum durum desf.) semolina was fractionated into starch, gluten, and water extractables. Starch surface proteins and surface lipids were removed, and two starches with manipulated granule size distributions were produced to influence starch properties, affecting its interaction with other semolina components. Reconstituted spaghetti was made with untreated (control) or treated starches. The pasta made from the starting semolina material had lower cooking time and was of lower quality than the samples made from reconstituted material. This was not due to changes in gluten properties as a result of the first step of the fractionation process. For the reconstituted samples, starch interaction behavior was not changed after surface protein or surface lipid removal. Starch surface properties thus do not influence the starch interaction behavior, indicating that starch-gluten interaction in raw (uncooked) pasta is mainly due to physical inclusion. All reconstituted pasta samples also had generally the same cooking quality. It was concluded that the small changes in starch gelatinization behavior, caused by the above-mentioned starch modifications, are of little importance for pasta quality.  相似文献   

5.
Fusarium head blight (FHB) symptoms, single‐kernel deoxynivalenol (DON) levels, and distribution of DON levels among kernels in response to artificial FHB inoculation were investigated in three selected wheat cultivars that had different reported levels of FHB resistance. DON levels were estimated with near‐infrared spectroscopy. The percentages of DON‐containing spikelets per spike of 15.2, 49.7, and 89.1% were significantly different among point‐inoculated spikes of Everest, Karl 92, and Overley, respectively. The percentage of visually Fusarium‐damaged kernels in point‐inoculated Karl 92 and Overley spikes was significantly higher than for Everest. However, the DON‐containing spikelets per spike and visually Fusarium‐damaged kernels values for spray‐inoculated spikes were not significantly different among the three cultivars. In spray‐inoculated spikes, DON levels in kernels ranged from 0 to 291.3 ppm, whereas the variation of DON levels in spikelet positions was random. In contrast, DON levels in spikelets below the inoculated spikelet in point‐inoculated spikes showed marked differences among the three cultivars. Overley had the highest DON accumulation in kernels. This near‐infrared spectroscopy method may be used as a novel way to evaluate wheat cultivars for FHB resistance to toxin accumulation. Other resistance components such as resistance to pathogen infection and resistance to pathogen spread may also be evaluated.  相似文献   

6.
The effects of varying the gluten composition at constant protein, protein content at constant composition, and glutenin‐to‐gliadin (glu/gli) ratio on durum semolina rheological properties and the quality of the spaghetti derived from these doughs was investigated using the reconstitution method. Reconstituted flours were built up from a common durum starch and water‐soluble fraction but with varying gluten types from a range of wheats at both 12 and 9% total protein. A 10‐g mixograph and microextensigraph properties were affected by the source of the gluten, which was related to glutenin composition and polymeric molecular weight distribution. Cooked pasta firmness was highly correlated to mixograph development time (MDDT). Furthermore, varying the protein content (9–20%) showed an increase in mixograph peak resistance (PR) with no effect on extensigraph Rmax. Pasta firmness increased and stickiness decreased with increasing protein content. In another experiment, the glutenin and gliadin fractions isolated from durum wheat were added to the respective base semolina to investigate the effect of varying the glu/gli ratio by 1.3–1.6 fold. Increasing the ratio increased MDDT but had no effect on PR and resistance breakdown. Variable effects were obtained for spaghetti firmness. The information obtained should prove useful to durum breeders by providing further evidence for the importance of protein to pasta quality.  相似文献   

7.
The effects of transglutaminase (TG) on the properties of semolina dough and pasta cooking properties in durum‐only and fiber‐enriched pasta were investigated. TG was blended at levels 0, 0.05, 0.1, 0.25, 0.5, and 1% of semolina weight with semolina and semolina‐pollard (60% w/w) and semolina‐guar gum (15%) mixtures. The addition of TG increased dough maximal resistance, making the dough inextensible at >1%. Optimum effects on dough strength were obtained at 0.5% TG; this dough gave the firmest and least sticky pasta. A more extensive and thicker protein matrix was observed in the TG pasta by confocal scanning laser microscopy, indicating more cross‐links were formed, a finding supported by measuring percentage of unextracted polymeric protein. TG was unable to overcome the negative effect of 60% pollard on cooking loss or 15% guar gum on stickiness. Gluten was generally more effective than TG in restoring the properties of pastas with added fiber.  相似文献   

8.
During pasta making, semolina is subject to various modifications that are mainly related to oxidative activities with relative effects on some of its components. To evaluate the involvement of hydroperoxidation and bleaching of lipoxygenase (LOX) and peroxidase (POD) activities on loss of pigments and ‐SH groups, their behavior in semolina and during processing was analyzed. Processing was done in standard and four experimental conditions, applying chemical (pH 5.0 and 8.0) and physical (10 and 40°C) treatments, during the mixing and extrusion phases, to study their effects on components. Results pointed out that treatments principally affected hydroperoxidation and bleaching activities of LOX rather than the POD. During pasta making, enzymatic activities showed the same trend in all cultivars, and this was reproducible in all the experimental conditions. Temperature effects on preservation of components were modest, whereas pH 8.0 improved the residual pigment and ‐SH group content in pasta, probably because of the concomitant reduction of oxidative enzyme levels. Finally, out of the four investigated wheat cultivars, Cosmodur showed the best performance in the experimental conditions applied. In fact, high pigment content and yellow index associated with low oxidative activity levels in semolina and in processing samples resulted in better pasta color. Such findings have confirmed that breeding and technological approaches may play an important role in the control of oxidative activities during pasta making, preserving the constituents that positively influence the final pasta color.  相似文献   

9.
《Cereal Chemistry》2017,94(5):857-865
This research was conducted to determine if genotypes selected for their superior traditional semolina pasta quality would also make the best whole wheat pasta. Results from 19 durum wheat cultivars and 17 breeding lines grown at 19 different environments in North Dakota showed that physical and cooking qualities varied differently for whole wheat and traditional spaghettis, respectively. Ward's clustering segregated the 36 genotypes into five groups based on whole wheat spaghetti quality. Groups 1 and 2 (21 genotypes) produced good to high‐quality whole wheat pasta that displayed high mean values for cooked firmness (4.3 and 4.1 g·cm), mechanical strength (31.3 and 31.0 g), and color (brightness, 34.92 and 34.54), respectively. Groups 4 and 5 produced poor quality whole wheat pasta that had low cooked firmness (both 3.5 g·cm) and high cooking loss (10.1 and 10.4%). Grain protein content (≥13.9%) was found with high quality of whole wheat spaghetti. Of the 36 genotypes evaluated, 21 and 3 genotypes produced good and poor qualities, respectively, of whole wheat and traditional spaghettis, and 12 other genotypes produced good traditional spaghetti but produced poor quality whole wheat spaghetti. These data indicate the need to select genotypes specifically for their whole wheat pasta quality.  相似文献   

10.
Pasta prepared by extrusion from 25 g of semolina has been compared with that made from a standard laboratory extruder and found to have similar quality. Durum semolina was fractionated into its starch, gluten, water soluble, and residue fractions. The freeze‐dried components were reconstituted and the properties of the reconstituted semolina (ReSem) have been measured. Examination using a 2 g‐mixograph and micro‐extension tester has shown that ReSem behaves similarly to the original semolina. ReSem and semolina were made into pasta using a small‐scale pasta extruder and were of comparable cooking quality. The fractionation and reconstitution of durum semolina on this scale is a useful technique to evaluate the contribution of semolina components to pasta quality.  相似文献   

11.
A rapid shear‐based test (the GlutoPeak test, recently proposed by Brabender) was used to investigate gluten aggregation properties of durum wheat semolina and to relate them to pasta cooking behavior. Thirty semolina samples were characterized by means of the conventional approaches used for pasta‐quality prediction (protein content, gluten index, and alveographic indices). All samples were also analyzed by the GlutoPeak test, obtaining three parameters: maximum peak torque, maximum peak time, and area under the peak. The GlutoPeak indices were significantly correlated with protein content, gluten index, and W alveographic parameter. The cooking quality of pasta obtained from the 30 semolina samples was evaluated by sensory analysis in terms of stickiness, bulkiness, firmness, and overall quality. The GlutoPeak indices were significantly correlated with the sensorial parameters. In comparison with the alveographic test, which is presently the most used rheological approach for semolina characterization, GlutoPeak analysis presents some advantages represented by a smaller amount of sample (9 g), a shorter time (less than 5 min), and the possibility that untrained analysts can carry it out. In addition, following testing with larger sample numbers, the GlutoPeak test has the potential to be used instead of the gluten index as a rapid and reliable approach for medium‐quality semolina characterization.  相似文献   

12.
Gluten was isolated from three durum wheat cultivars with a range in strength. Gluten was further fractionated to yield gliadin, glutenin and high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits (GS). The gluten and various fractions were used to enrich a base semolina. Enriched dough samples were prepared at a fixed protein content using a 2‐g micromixograph. Mixing strength increased with addition of gluten. Dynamic and creep compliance responses of doughs enriched with added gluten ranked in order according to the strength of the gluten source. Gliadin addition to dough resulted in weaker mixing curves. Gliadin was unable to form a network structure, having essentially no effect on dough compliance, but it did demonstrate its contribution to the viscous nature of dough (increased tan δ). Source of the gliadin made no difference in response of moduli or compliance. Addition of glutenin to the base semolina increased the overall dough strength properties. Glutenin source did influence both dynamic and compliance results, indicating there were qualitative differences in glutenin among the three cultivars. Enrichment with both HMW‐GS and LMW‐GS increased overall dough strength. Source of HMW‐GS did not affect compliance results; source of LMW‐GS, however, did have an effect. The LMW‐2 proteins strengthened dough to a greater extent than did LMW‐1. Mechanisms responsible for dough viscoelastic properties are described in terms of reversible physical cross‐links.  相似文献   

13.
A pool of selected lactic acid bacteria was used to ferment durum wheat semolina under liquid conditions. After fermentation, the dough was freeze-dried, mixed with buckwheat flour at a ratio of 3:7, and used to produce the "fusilli" type Italian pasta. Pasta without prefermentation was used as the control. Ingredients and pastas were characterized for compositional analysis. As shown by two-dimensional electrophoresis, 92 of the 130 durum wheat gliadin spots were hydrolyzed almost totally during fermentation by lactic acid bacteria. Mass spectrometry matrix-assisted laser desorption/ionization time-of-flight and reversed phase high-performance liquid chromatography analyses confirmed the hydrolysis of gliadins. As shown by immunological analysis by R5-Western blot, the concentration of gluten decreased from 6280 ppm in the control pasta to 1045 ppm in the pasta fermented with lactic acid bacteria. Gliadins were extracted from fermented and nonfermented durum wheat dough semolina and used to produce a peptic-tryptic (PT) digest for in vitro agglutination tests on cells of human origin. The whole PT digests did not cause agglutination. Affinity chromatography on Sepharose-6-B mannan column separated the PT digests in three fractions. Fraction C showed agglutination activity. The minimal agglutinating activity of fraction C from the PT digest of fermented durum wheat semolina was ca. 80 times higher than that of durum wheat semolina. Pasta was subjected to sensory analysis: The scores for stickiness and firmness were slightly lower than those found for the pasta control. Odor and flavor did not differ between the two types of pasta. These results showed that a pasta biotechnology that uses a prefermentation of durum wheat semolina by selected lactic acid bacteria and tolerated buckwheat flour could be considered as a novel tool to potentially decrease gluten intolerance and the risk of gluten contamination in gluten-free products.  相似文献   

14.
Pasta yellowness is affected by different factors, the most important of which are intrinsic to the quality of semolina (natural carotenoid pigments, protein, ash, and lipoxygenase [LOX] activity) and processing conditions. Because all the parameters involved in pasta color are under the control of varietal and environmental factors, the role of the genotype, environment, and the interaction between genotype and environment on color expression were studied. Although the analysis of variance showed the genotype-by-environment interaction to be significant, a nonorthogonal analysis attributed a higher weight to genotype on parameters directly involved in color expression: β-carotene content, yellow index, and LOX activity. Furthermore, the loss of pigments and yellow index after milling and processing was evaluated and correlated with all the parameters involved in the determination of final pasta color. The phase mainly responsible for pigment loss was pasta processing. A decrease of 16.3% in semolina β-carotene content during pasta processing versus a 7.9% loss during milling was determined. The isoenzymatic forms LOX-2 and LOX-3, active at the pH of dough, were responsible for the loss of color in pasta products. Simple correlations and the linear multiple regression corroborated this finding. Hydroperoxidation activity at pH 6.6, bleaching activity, and ash content were responsible for 87% (R2 adjusted) of total variance, with each variable accounting for 57, 61, and 22% of the variation, respectively. This confirms that LOX activity is the main factor involved in the loss of color, while a secondary and lesser role can be seen for ash content. Therefore, a high pigment content, located in the interior of the whole grain, and a lower LOX activity in semolina must be the selection characteristics by which breeding programs obtain a bright yellow pasta.  相似文献   

15.
Fusarium Head Blight (FHB), or scab, can result in significant crop yield losses and contaminated grain in wheat (Triticum aestivum L.). Growing less susceptible cultivars is one of the most effective methods for managing FHB and for reducing deoxynivalenol (DON) levels in grain, but breeding programs lack a rapid and objective method for identifying the fungi and toxins. It is important to estimate proportions of sound kernels and Fusarium‐damaged kernels (FDK) in grain and to estimate DON levels of FDK to objectively assess the resistance of a cultivar. An automated single kernel near‐infrared (SKNIR) spectroscopic method for identification of FDK and for estimating DON levels was evaluated. The SKNIR system classified visually sound and FDK with an accuracy of 98.8 and 99.9%, respectively. The sound fraction had no or very little accumulation of DON. The FDK fraction was sorted into fractions with high or low DON content. The kernels identified as FDK by the SKNIR system had better correlation with other FHB assessment indices such as FHB severity, FHB incidence and kernels/g than visual FDK%. This technique can be successfully employed to nondestructively sort kernels with Fusarium damage and to estimate DON levels of those kernels. Single kernels could be predicted as having low (<60 ppm) or high (>60 ppm) DON with ≈96% accuracy. Single kernel DON levels of the high DON kernels could be estimated with R2 = 0.87 and standard error of prediction (SEP) of 60.8 ppm. Because the method is nondestructive, seeds may be saved for generation advancement. The automated method is rapid (1 kernel/sec) and sorting grains into several fractions depending on DON levels will provide breeders with more information than techniques that deliver average DON levels from bulk seed samples.  相似文献   

16.
A rapid shear‐based test using a GlutoPeak instrument was compared with tests commonly used by durum wheat breeders to assess the potential of this instrument to discriminate between samples. Thirty‐two durum wheat semolina samples were analyzed by mixograph, SDS sedimentation (SDSS), gluten index (GI), and GlutoPeak testing. A subset was also tested for pasta quality. GlutoPeak peak maximum time (PMT) was the best indicator of gluten strength and correlated well with the other tests except SDSS. Samples with higher levels of SDS‐unextractable glutenin (insoluble protein [IP]) had stronger dough and longer PMT, but the GlutoPeak test only correlated with pasta stickiness using a smaller set of samples. The range in mixogram profiles encountered in breeding material was related to the IP content, and the pasta made from the different types was of similar quality, differing more because of protein content rather than mixogram type. The GlutoPeak test is faster than GI and uses less sample, requires little technical skill, and is suitable for evaluating large numbers of breeder's lines. The GlutoPeak test is best suited to discriminating weak from strong dough samples and allows for testing with small samples, thus facilitating quality evaluations at early stages of a breeding program.  相似文献   

17.
The kernel characteristics and composition, milling performance, protein quality, and alveograph parameters of five spelt cultivars grown in European countries were determined in relation of their utilization in pasta products. Long pasta was manufactured and chemically characterized, and its quality was assessed by sensory and chemical tests. Protein and fat contents were high in the grains (15.7 and 4.4% db, mean value, respectively). Total fiber varied from 10.5 to 14.9% db. The average β-glucan content was 1.2% db. The milling performance as determined by yield, damaged starch, ash, and particle-size distribution in the flour was uniform among the five cultivars. The results of the SDS sedimentation and gluten index tests indicated that spelt gluten strength was low, and this was confirmed by the alveograph test. Sensory and chemical evaluations of the pastas, however, indicated that spelt is suitable for obtaining good-quality pasta. The combination of the high protein content and the high-temperature drying cycle adopted in pasta production could be responsible for these good results.  相似文献   

18.
The effects of cultivar on dough properties of ground whole wheat durum, and the effects of cultivar and drying temperature on the physical and cooking quality of spaghetti made from semolina and whole wheat were evaluated. Rankings of cultivars based on dough properties were similar for whole wheat and semolina. Dough made from whole wheat was weak and had poor stability. Whole wheat spaghetti had a rough reddish brown surface compared with the very smooth, translucent yellow color of spaghetti made from semolina. The reddish brown color of whole wheat spaghetti was enhanced by high‐temperature drying (70°C). Mechanical strength and cooking quality of spaghetti made from ground whole wheat or semolina varied with cultivar and with drying temperature. Compared with spaghetti made from semolina, whole wheat spaghetti had lower mechanical strength and cooked firmness and had greater cooking loss. Mechanical strength of whole wheat spaghetti was lower when dried at high temperature (70°C) than at low temperature (40°C). Conversely, the mechanical strength of spaghetti made from semolina was greater when dried at high temperature than at low temperature. Whole wheat and traditional spaghetti dried at high temperature had lower cooking losses than spaghetti dried at low temperature. When overcooked 6 min, firmness of spaghetti made from semolina or whole wheat was greater when dried at high temperature than at low temperature.  相似文献   

19.
Commercial durum wheat semolina was fractionated into protein, starch, water-extractable, and sludge fractions. The starch fraction was hydroxypropylated, annealed, or cross-linked to change its gelatinization and pasting properties. Spaghettis were made by reconstitution of the fractions, and their quality was assessed. Hydroxypropylated starches were detrimental for cooked pasta quality. Cross-linked starches made the reconstituted pasta firmer and even brittle when the degree of cross-linking was too high. These results indicate that starch properties play a role in pasta quality, although the gluten remains very important as an ultrastructure agent. It was concluded that, given a certain gluten ultrastructure, starch water uptake and gel properties and/or its interference with or breakdown of the continuous gluten network during cooking determine pasta quality.  相似文献   

20.
Pasta yellowness depends on the semolina carotenoid content, carotenoid degradation by lipoxygenase (LOX), and pasta processing conditions. In breeding programs, early generation lines are selected for high grain yellow pigment content with the intent to improve pasta color. This approach has been successful in increasing the grain yellow pigment of Canadian durum wheat in the last few decades. In recent years, however, a weak relationship between pasta yellowness (b*) as measured by a Minolta spectrophotometer and semolina yellow pigment content (r = 0.19–0.52) was noted in the Canadian durum wheat lines. Thus, total semolina yellow pigment content cannot effectively predict the yellowness of its pasta product. Therefore, a fast and simple method was developed to predict pasta yellowness by measuring semolina dough sheet color at different time intervals after sheeting (0.5, 2.0, and 24 hr). Spaghettis were processed from the semolina samples at two drying temperature cycles (70 and 90°C). There were significant correlations between dough sheet b* values at all three times and spaghetti b* values at both drying temperatures (r = 0.87–0.94). Semolina dough sheet can be easily prepared in 15 min and requires only 30 g of material. Shortly after sheeting (30 min), dough sheet b* values can be used to predict pasta yellowness without producing the end product (involving mixing, extrusion, and drying). In this study, we also found that dough sheet b* values increased significantly with time over the sampling intervals after sheeting for those breeding lines with superior pasta color. DNA analysis revealed that all those lines lacked the Lpx‐B1.1 duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号