共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication. 相似文献
2.
The efficiency of phospholipase and lipase preparations in the hydrolysis of lysophospholipids of native and gelatinized barley starch was examined. The degree of hydrolysis was analyzed by determination of the amount of released fatty acids by an enzymatic method. Thermal and structural properties of the enzyme-treated starch were studied by differential scanning calorimetry and light microscopy. Lysophospholipids of the gelatinized barley starch were easily hydrolyzed, in contrast to the lipids of the granular starch. The maximum degree of hydrolysis achieved for the gelatinized starch was 80% and for the native starch ≈20%. Gelatinization enthalpies and micrographs indicated that even though the amount of the released fatty acids from the native starch was small, formation of free fatty acids inhibited swelling and gelatinization of starch granules. 相似文献
3.
In this review, starch behavior is described from molecules in solution to the use of starch in products. The determination of molecular characteristics with asymmetrical flow field‐flow fractionation is described, and the behavior of starch in binary solutions is discussed. The organization of starch in granules and the changes in organization during gelatinization and retrogradation are then described. The role of starch retrogradation in bread staling is described in some detail, and the influence of water mobility and distribution is discussed in relation to amylopectin retrogradation. Finally, the use of starch as emulsifier is described. Hydrophobically modified starch is one possibility for emulsion stabilization; also, the starch granule as such can be used to stabilize emulsions (so‐called Pickering emulsions). 相似文献
4.
Emako Miyoshi 《Cereal Chemistry》2002,79(1):72-77
Effects of heat-moisture treatment (HMT) and lipids on the structure and gelatinization of maize and potato starches were studied, and the retrogradation process of 20% HMT starch gels was also investigated. Maize starch was physically modified by HMT or by defatting. Potato starch was physically modified by HMT or by adding monoglycerides. The X-ray pattern of the HMT maize starch was assigned to a combination of A and V patterns, which indicated that HMT formed crystallized amylose complexes and recrystallized amylose in maize starch granules. However, the X-ray pattern of defatted maize starch did not change for HMT, so the lipids originally existing in starch granules were important to the formation of new crystallites during this treatment. Differential scanning calorimetry (DSC) results suggested that weaker structures in amylopectin crystallites were more susceptible to degradation after HMT, while crystallized amylose complexes developed thermal stability after treatment. The amylose contents increased with increasing degree of HMT, which suggested that the newly created amylose arose from exterior linear chains of amylopectin degraded by the treatment. Investigation of retrogradation process showed that HMT significantly promoted retrogradation of starch gels, especially the initiation of recrystallization. 相似文献
5.
Starches of wheat, corn, smooth and wrinkled peas, and chickpeas were modified to a free‐flowing powder of granular cold‐water gelling (GCWG) starch using liquid ammonia and ethanol at 23°C and atmospheric pressure. Amylose content of starches was 26.3% in wheat, 27.1% in corn, 35.4% in chickpeas, 43.2% in smooth peas, and 79.9% in wrinkled peas. The modified starches remained in granular form with an increased number of grooves and fissures on the surface of the granules compared with native starch, while the crystallinity was mostly lost, as shown by X‐ray diffractograms and DSC endothermic enthalpies. Pasting viscosity of modified starches at 23°C was 171 BU and 305 BU in wheat and corn, respectively, and much higher in legume starches, ranging from 545 BU to 814 BU. Viscosities of modified legume starches at 23°C were at least twice as high as those of native starches determined at 92.5°C. Swelling power of modified starches at 23°C ranged from 8.7 g/g to 15.3 g/g, while swelling power of native starches heated to 92.5°C ranged from 4.8 g/g to 16.0 g/g. GCWG starches exhibited higher dextrose equivalent (DE) values of enzymatic hydrolysis, ranging from 25.2 to 27.0 compared with native starches (1.5–2.9). Modified starches from wheat, corn, smooth peas, and chickpeas formed weak gels without heat treatment and experienced no changes in gel hardness during storage, while native starch gels formed by heat treatment showed an increase in hardness by 1.1–7.5 N during 96 hr of storage at 4°C. 相似文献
6.
Water, Air, & Soil Pollution - Minimizing the risks associated with manure-borne pathogenic microorganisms requires an understanding of microbial survival under realistic field conditions. The... 相似文献
7.
胰蛋白酶对壳聚糖的降解研究 总被引:9,自引:0,他引:9
用粘度法和吸光度法,研究胰蛋白酶非专一性降解壳聚糖过程中温度、PH值、反应时间、酶浓度、底物浓度。金属离子对胰蛋白酶降解壳聚糖反应的影响,确定了以壳聚糖为底物的胰蛋白酶的一些催化特性:最适温度为30℃,最适PH值为5.0,10-180min内酶反应速度恒定,酶浓度在0.1-0.5g/L的范围内,酶反应速度与酶浓度呈线性关系,米氏常数Km为9.54g/L。 相似文献
8.
Oxidized corn starch prepared by a semi-dry process using hydrogen peroxide as an oxidant was studied. The optimum oxidation conditions of corn starch were mole ratio of H2O2 and anhydroglucose unit (0.219); mole ratio of NaOH and anhydroglucose unit (0.144); moisture content of the reaction mixture (27.2%); and reaction temperature (65°C). Compared with oxidized corn starch produced by reacting starch with sodium hypochlorite in alkaline slurry, oxidized corn starches produced by a semi-dry process apparently had different properties. Oxidation by a semi-dry process for corn starch resulted in significant changes in the degree of crystallinity of starch and the changes increased with the increase of carboxyl content of starch. Peak viscosities of oxidized starches produced by a semi-dry process were lower than those of commercial corn starch at similar carboxyl contents, while the final viscosities and setbacks of the former were much higher than the latter. There were apparent differences for texture properties among oxidized starches prepared by different processes. Onset temperature, peak temperature, and conclusion temperature of semi-dry oxidation starches were higher than those of commercial oxidized starch, while the enthalpy of gelatinization of the former were lower than the latter. 相似文献
9.
A detailed analysis was developed, focused on the neutral lipids (NL) in free (FL), bound (BL), and starch lipid (SL) extracts of maize and rye flours, sourdough, and broa (a traditional bread manufactured in Portugal). Selective sequential extraction of said lipids with hexane at 20°C, water‐saturated n‐butanol at 20°C, and n‐propanol‐water (3:1, v/v) at 100°C was performed to clean the lipid extracts from extraneous impurities, and isolation thereof from glyco‐ and phospholipids was by solid phase extraction of NL; these classes were then quantitatively assayed by HPLC, using evaporative light scattering detection, with calibration curves prepared with standard mixtures of NL. The BL and SL contents in the original flours increased and that of FL decreased throughout the fermentation and baking processes. The dominant NL class was not the same in all lipid extracts; the highest concentrations of triacylglycerols and the lowest concentrations of free fatty acids were detected in FL—with the former accounting for 82, 76, and 71% of the total FL in flours, sourdough, and bread, respectively. Triacylglycerols and free fatty acids also accounted for the highest concentrations found in BL: these, together with diacylglycerols, contributed up to 84% of the total neutral BL. High levels of free fatty acids and low levels of the remaining NL classes were typically found in SL: free fatty acids, triacylglycerols, sterol esters, and diacylglycerols accounted for ≈90% of the total SL. 相似文献
10.
本研究从广西花坪自然保护区采集的土壤中筛选获得了一株产糖化酶丝状真菌菌株57-45,通过形态学观察和真菌内转录间隔区(internal transcribed spacer,ITS)序列比对分析,将其初步鉴定为曲霉属(Aspergillus sp.)的一个种。纯化真菌57-45所产的一种胞外糖化酶经过硫酸铵分级沉淀、疏水层析和阴离子交换层析三步蛋白质纯化步骤,得到在SDS-PAGE上约60kD的单一蛋白质条带,薄层层析分析表明该纯化的蛋白质水解可溶性淀粉的产物只有葡萄糖,证明该纯化的蛋白质为糖化酶。纯化的糖化酶Km值为1.9mg/mL,Vmax为4148μmol/(min·mg),最适作用pH5.5,最适作用温度50℃,在同步糖化发酵中有应用的潜力。金属离子Fe3+、Zn2+、Cu2+对酶活有较强的抑制作用,EDTA对酶活有较强的促进作用。本文结果将为进一步研究曲霉糖化酶的酶学特性提供新的材料。 相似文献
11.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality. 相似文献
12.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules. 相似文献
13.
Chuankhayan P Rimlumduan T Svasti J Cairns JR 《Journal of agricultural and food chemistry》2007,55(6):2407-2412
Two beta-glucosidases from the legumes Dalbergia cochinchinensis and Dalbergia nigrescens were compared for their ability to hydrolyze isoflavonoid glycosides from soybean. Both D. nigrescens and D. cochinchinensis beta-glucosidases could hydrolyze conjugated soybean glycosides, but D. nigrescens beta-glucosidase hydrolyzed both conjugated and nonconjugated glycosides in crude soybean extract more rapidly. The kinetic properties Km, kcat, and kcat/Km of the Dalbergia beta-glucosidases toward conjugated isoflavonoid glycosides, determined using high-performance liquid chromatography, confirmed the higher efficiency of the D. nigrescens beta-glucosidase in hydrolyzing these substrates. The D. nigrescens beta-glucosidase could also efficiently hydrolyze isoflavone glycosides in soy flour suspensions, suggesting its application to increase free isoflavones in soy products. 相似文献
14.
Three high-amylose maize starches (HAS) and a common corn starch (CCS) were subjected to differential alcohol precipitation using isoamyl alcohol and 1-butanol to obtain fractions designated as amylose (AM), amylopectin (AP), and intermediate material (IM). For each starch, IM had a blue value and an iodine binding wavelength maximum (λmax) between the λmax of the respective AM and AP. Size-exclusion chromatography (SEC) showed similarities in the AM from CCS and HAS. HAS AP had higher blue values and iodine binding λmax values than CCS AP. SEC of the intact HAS AP and IM both showed large proportions of material eluting after the void volume (45–85%) when compared to CCS AP and IM. Chain length (CL) distributions of debranched AP and IM indicated that these fractions from each starch were highly branched, and that AP had a shorter average chain length than IM. Consequently, the differential precipitation behavior of the HAS AP and IM appears dependent on general branching structure rather than size. We conclude that in both CCS and HAS, AP and IM are subsets of the branched molecules with AP as the predominant fraction. For HAS, AP and IM include molecules of a size typical for AM and contain a higher proportion of chains that are longer than those of CCS AP. Differential alcohol precipitation is a useful method of separating amylose, amylopectin, and intermediate material from HAS. 相似文献
15.
Arroyo LJ Li H Teppen BJ Johnston CT Boyd SA 《Journal of agricultural and food chemistry》2004,52(26):8066-8073
The influence of clay preparation methods on the sorption and hydrolysis of carbaryl (1-naphthyl, N-methyl carbamate) by K+-saturated reference smectite SWy-2 was studied. Four methods were utilized: (1) The reference (or specimen) clay used as received was K+-saturated (hereafter referred to as whole clay). (2) High-speed centrifugation (3295g) of whole clay resulted in a pellet with three discrete bands. The upper, light-colored, low-density band was obtained by manual separation (light fraction). The high-density, dark-colored material comprising the lower band (heavy fraction) was also obtained manually. (3) SWy-2 was subjected to overnight gravity sedimentation to obtain the <2 microm particles (clay-sed.) and then K+-saturated. (4) SWy-2 was subjected to low-speed centrifugation (58-60g) to separate the <2 microm particle size (clay-cent.) and then K+-saturated. Each preparation of mineral fractions manifested significantly different abilities to hydrolyze carbaryl to 1-naphthol, decreasing in the order whole clay > heavy fraction > clay-sed. > light clay > clay-cent. The extent of 1-naphthol disappearance from solution, accompanied by a progressive darkening of the clay, followed the order whole clay > heavy fraction > light clay > clay-sed. > clay-cent. Using ring labeled [14C]carbaryl, approximately 61 and 15% of the total 14C activity added to the whole clay and light fraction, respectively, remained unextractable. X-ray diffraction of the heavy fraction revealed several peaks corresponding to minor impurities, including calcite and dolomite. Aqueous slurries of whole clay, light fraction, clay-sed., and heavy fraction were alkaline, whereas the pH of slurried clay-cent. was neutral. It was concluded that dissolution of inorganic carbonate impurities in SWy-2 caused alkaline conditions in the slurries leading to the hydrolysis of carbaryl. Dissolution of carbonates with sodium acetate buffer eliminated hydrolytic activity associated with SWy-2. None of the four preparation methods reliably removed inorganic carbonates. The use of commercial or reference smectites in surface chemistry studies should be accompanied by a treatment with acetate buffer to remove carbonate impurities. 相似文献
16.
FDA水解检测井冈霉素的土壤微生物活性效应 总被引:2,自引:0,他引:2
通过FDA(荧光素双乙酸脂)水解,研究井冈霉素对土壤微生物活性的生态效应。结果表明:低浓度(7.5~15mlkg-1 dry soil)井冈霉素对土壤微生物活性无显著影响;中等浓度(30~60mlkg-1 dry soil)井冈霉素增加土壤微生物活性,60mlkg-1 dry soil井冈霉素处理土样21天微生物活性与对照相比增加21.6%;高浓度(120~240mlkg-1 dry soil)井冈霉素对土壤微生物活性起一定抑制作用,240mlkg-1 dry soil井冈霉素处理土样28天土壤微生物活性与对照相比下降14.7%;35天所有处理土样微生物活性均恢复到对照水平。 相似文献
17.
大豆根分泌物活化难溶性铝磷的研究 总被引:11,自引:1,他引:11
在酸性红壤上,土壤有效磷含量低,大部分磷以难溶性磷形式存在,这是影响作物生产的重要限制因素之一。作物根分泌物活化难溶性磷的能力对改善其磷素营养具有重要意义。本文系统研究了大豆根分泌物对难溶性铝磷的活化效果,同时运用阴、阳离子交换树脂将根分泌物分成阴离子组分、中性组分和阳离子组分,活化结果表明.阴离子组分对铝磷的活化量显著高于中性组分和阳离子组分。运用分子膜把根分泌物分成大于8K、8~3.5K、3.5~1K和小于1K组分.发现对铝磷活化量最大的组分为小于1K根分泌物组分。另外.小于1K阴离子组分对铝磷的活化量为缺磷13.2mg/pot,供磷可达9.3mg/pot,分别占总根分泌物活化量的71%和57%。运用离子色谱仪对小于1K阴离子组分根分泌物测定表明,供磷和缺磷处理.根系均能分泌少量的柠檬酸和苹果酸,约占铝处理的10%~20%,但处理之间差异不显著。上述研究表明.除有机酸影响难溶性铝磷活化之外,根分泌物中可能还存在其它物质对铝磷活化有促进作用,相关研究正在深入进行之中。 相似文献
18.
Small starch particles were prepared by hydrolyzing waxy rice starch using α‐amylase and then ultrasonicating in ethanol. Differential scanning calorimetry (DSC) revealed that a mild hydrolysis for 3 hr increased the melting enthalpy of the starch, which might indicate that the hydrolysis was selective in the amorphous regions. Later, at 6–24 hr, the hydrolysis rate was reduced, with gradual decreases in DSC melting enthalpy, indicating that the crystalline regions were eroded simultaneously. X‐ray diffraction patterns revealed the same trend as the DSC results. Average diameter of starch granules or particles was decreased dramatically in both volume‐ and number‐based measurements (5.94→1.64 μm, and 0.45→0.18 μm, respectively) during the early stage of rapid hydrolysis (up to 3 hr). Native waxy rice starch exhibited a particle size distribution with a major peak at 5.6 μm. After hydrolysis for 3 hr, the volume distribution of starch granules changed to two major size peaks at 0.5 and 3.6 μm. The starch fragment of 0.5 μm was assumed to consist of crystalline blocklets. With excessive hydrolysis (24 hr) or ultrasonication, however, starch particle diameter was increased, indicating that the particles might be swollen or aggregated into clusters. 相似文献
19.
Starch nanoparticles (SNP) from maize starches of varying amylose content (0–71%) were prepared by acid hydrolysis (3.16M H2SO4, at 40°C up to 6 days) followed by repeated water washings. During the washing cycles, nonwaxy starches (normal, Hylon V, and Hylon VII) had suspended particles in the water washings, which were not evident in waxy starch. Microscopic examination revealed the presence of SNP in the “cloudy supernatants” of nonwaxy starches and in the “final washed residue” of waxy maize. The objective of this study was to collect SNP fractions accordingly and determine whether variation in the native starch amylose content would influence the yield, morphology, and crystallinity of the SNP. In nonwaxy starches, the yield of SNP increased up to 26.6% with hydrolysis time and was proportional to the amylose content. Morphology of SNP differed with starch type: flat/elliptical (500 nm) in waxy, oval/irregular (50–200 nm) in normal, oval/round (40–50 nm) in Hylon V, and square/polygonal (50–100 nm) in Hylon VII. X‐ray diffraction confirmed the presence of A‐type crystals in SNP from all starch types and a crystalline transformation from B‐ to A‐type in Hylon starches. The relative crystallinity of SNP was higher than their native starch counterparts. 相似文献
20.
Retrogradation of three high-amylose starches (HAS: ae du, ae V, and ae VII) and common corn starch (CCS) was examined by dynamic oscillatory rheometry (7.5% [w/w] starch in 20% [v/v] dimethyl sulfoxide [DMSO]), differential scanning calorimetry (DSC; 30% [w/w] starch in water), and turbidity (0.5% [w/w] starch in 20% [v/v] DMSO). Nongranular lipid-free starch and starch fractions (amylose [AM], amylopectin [AP], and intermediate material [IM]) were studied. Gels were prepared by dispersing starches or fractions in 90% DMSO and diluting with water, followed by storage for seven days at 4°C. For AM from each starch, the elastic modulus (G′) was similar when heated from 6 to 70°C. The G′ of HAS AP gels at 6°C was higher than for CCS AP gels. For nongranular CCS and ae du gels, G′ dropped dramatically (≈100×) when heated from 6 to 70°C, less (≈10×) for ae V gels, and least (≈5×) for ae VII gels. By DSC, each AM endotherm had a peak temperature of ≈140°C, whereas all AP endotherms were complete before 120°C. Endotherms >120°C were not observed for any nongranular starch despite the high AM content of some starches. After cooling starch suspensions from room temperature to 5°C and subsequent rewarming to room temperature, each AM and the ae VII nongranular starch remained highly turbid. Each AP and the remaining nongranular starches lost turbidity during rewarming. Our work suggests that branched molecules of CCS and HAS influence gel properties of nongranular starches by inhibiting or altering AM-AM interactions. 相似文献