首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viscosity is an important end-use attribute for some soft wheat flour formulations. Specifically, in formulations with minimal gluten development, such as batters (as in cake, pancake, and doughnut) and coatings (as in tempura), viscosity is important to leavening gas retention and flow characteristics. Current tests for predictors of viscosity leave considerable unexplained variation. The potential for water-extractable arabinoxylans to form oxidative gels through ferulic acid dimerization may represent an important component of viscosity variation. A method was developed to identify variation in viscosity due to oxidative gelation. This method, comparing viscosity of flour slurries made with water, a peroxide-peroxidase system, and a system with xylanase, indicated that two, and likely three, types of oxidative gelation were contributing to viscosity. Predicted viscosity due to inter-arabinoxylan gelation through ferulic acid dimerization, dityrosine formation among proteins, and ferulic acid-tyrosine bond formation varied among wheat cultivars. Oxidative gel formation increased batter viscosity probably due to water sequestration; this effect was correlated with reduction in the sugar snap cookie spread (diameter). Results indicate that oxidative gelation is an important contributor to batter viscosity and also contributes to the quality attributes of dough systems.  相似文献   

2.
Commercial wheat protein fractions (10) were evaluated during processing for quality of tortillas prepared using pastry, tortilla, and bread flours. Protein fractions that separately modify dough resistance and extensibility were evaluated in tortillas to determine whether the proteins could increase diameter, opacity, and shelf stability. Tortillas were prepared using laboratory‐scale, commercial equipment with fixed processing parameters. Dough and tortilla properties were evaluated using analytical methods, a texture analyzer, and subjective methods. Tortillas were stored in plastic bags at 22°C for up to 20 days. Adjustments in water absorption and level of reducing agent were made to normalize differences in functionality of 3% added proteins on dough properties. Tortilla weight, moisture, pH, opacity, and specific volume were not affected by added proteins, except for glutenin and vital wheat gluten treatments, which had decreased opacity in tortillas prepared from pastry flour. Increased insoluble polymeric protein content corresponded to decreased tortilla diameter and improved shelf stability. Treatments yielding tortillas with improved shelf stability and similar tortilla properties were produced when commercially processed vital wheat gluten products, FP600, FP6000, FP5000, or gliadin were added to pastry or tortilla flour. These wheat protein fractions improved processing and tortilla quality of wheat flours, especially pastry flour, by modifying protein content and quality.  相似文献   

3.
The processing and quality of wheat flour tortillas prepared with partial waxy and normal flour were evaluated. Control procedures and formula were utilized with water absorption varied to obtain machineable doughs. Amylose content was lower in most partial waxy compared with normal wheats. The type of wheat starch did not affect most dough properties or tortilla diameter. Tortilla height and opacity were adversely affected by the decreased amount of amylose in partial waxy wheats. Sufficient leavening reactions occurred early in baking (after 10 sec) to yield an opaque disk, but some baked tortillas lost opacity and become partially transparent after baking. Starch gelatinizes, disperses, and retrogrades concurrently with the leavening reaction during the short (<30 sec) baking time. Amylose functionality during baking and cooling appears to be involved in the retention of air bubbles in tortillas.  相似文献   

4.
Amylose content is closely related to wheat flour pasting or thermal properties, and thus affects final food qualities. Fourteen flour blends with amylose content ranges of <1 to 29% were used to study tortilla production and quality parameters. Reduced amylose contents decreased dough stickiness and pliability; low amylose doughs were also very smooth in appearance. Very low flour amylose content was associated with earlier tortilla puffing and poor machinability during baking, darker color, low opacity, larger diameters, and reduced flexibility after storage. Tortilla texture analysis indicated that lowering amylose content gave fresh tortillas higher extensibility; after three or more days storage, however, low amylose flours required more force to break the tortillas and the rupture distances became shorter. These results, as reflected in covariate analysis, were not significantly affected by the flour blend's protein content, swelling volume/power, SDS‐sedimentation volume, mixograph dough development time, or mixograph tolerance score. Based on our observation of an initial increase in extensibility with reduced‐amylose tortillas, adding 10–20% waxy flour into wild‐type flours should be ideal for restaurant (on‐site) tortilla production or circumstances where tortillas are consumed shortly (within a day) after production. The optimal flour amylose content for hot‐press wheat tortilla products is 24–26%.  相似文献   

5.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

6.
为探索谷蠹在不同生长发育阶段对储藏小麦蛋白结构的影响,该文以谷蠹种虫感染后的小麦为研究对象,对谷蠹不同发育阶段(卵期、幼虫期、蛹期、成虫期)侵害后小麦中麦谷蛋白大聚合体(glutenin macropolymer,GMP)、沉降值、面筋蛋白持水力、蛋白二级结构、巯基(-SH)、二硫键(-S-S-)及面筋显微结构进行测定与分析。结果表明:在谷蠹发育的4个阶段,GMP、沉降值、β转角总体呈增加趋势,-SH、β折叠比例变化与之相反;面筋蛋白持水力、-S-S-和α螺旋比例总体呈先降后升趋势,无规卷曲比例变化则与之相反。卵期谷蠹危害较小,只有β转角和面筋蛋白持水力有显著变化(P0.05);幼虫期和蛹期谷蠹危害严重,与相同试验条件下相应时期的无虫小麦对照样相比,GMP、无规卷曲和β转角比例及沉降值均显著增加(P0.05),面筋蛋白持水力、-SH、-S-S-、α螺旋和β折叠显著减少(P0.05)。面筋蛋白显微结构显示:随着谷蠹在小麦籽粒内部发育,面筋表面粗糙程度加重,微纤维状丝增多,结构疏松散乱,断裂严重,至成虫期时,面筋结构已无法识别,因此在实际储藏过程中不仅要关注成虫的数量,还应注意及时控制谷蠹的生长发育。  相似文献   

7.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking.  相似文献   

8.
Soft white and club wheat (Triticum aestivum L.) market subclasses have specific end-use characteristics. Among the most important of these characteristics are weak dough mixing and handling properties as a result of weak gluten. The SDS sedimentation test has gained wide acceptance as a useful, small-scale test in bread wheat breeding programs to predict gluten strength and baking quality. To optimize its use for soft white or club wheat breeding, variations of the SDS sedimentation test were performed on grain from winter wheats grown at eight locations in the U.S. Pacific Northwest, and the effects of lines, environment, and their interactions on SDS sedimentation volumes were determined. Using different sample weights and substituting whole meal for flour did not affect the ability of the SDS sedimentation test to differentiate among lines. Changes in protein concentration and sample weight caused proportional changes in SDS sedimentation volumes; however, the response was not consistent among all lines. Line had a greater effect on the SDS sedimentation volumes than any other source of variation. If differential effects of protein to SDS sedimentation among lines are taken into account, the SDS sedimentation test should be an effective small-scale test for end-use quality assessment in soft white and club wheat breeding programs.  相似文献   

9.
Accurate determination of tortilla quality is imperative because of the growing market. This calls for quality tests that are replicable. However, current tortilla quality testing relies heavily on subjective tests with unknown reliability. This study aimed to determine the relationship between subjective tortilla quality testing and available objective methods, and assess whether the latter can potentially replace the former. Correlation and regression analyses were done using data on subjective opacity and rollability, and objective L* value and texture parameters based on 114 wheat samples. Opacity scores and L* values were significantly correlated, but this relationship was affected by evaluator experience; in a controlled setting, experienced evaluators scores were more reliable (SEM = ±0.25 – 3.8, r = 0.96) than less experienced evaluators (SEM = ±0.25 – 7.3, r = 0.92). Tortilla rollability, which approximates shelf stability, correlated most strongly with the rupture distance from two‐dimensional extensibility test (r = 0.77). Subjective rollability at day 16 of storage was predicted by rupture distance (day 0) and work (day 4) (R2 = 0.69). Adding rupture force to the model slightly improves the R2 to 0.72. Objective color and texture parameter measurements have a potential to replace the subjective tests as primary methods for tortilla quality.  相似文献   

10.
The stability of vitamin E during 297 days of storage of wheat flour and whole wheat flour ground on a stone mill or a roller mill, respectively, were studied. One day after milling, the total content of vitamin E, expressed in vitamin E equivalents (α‐TE), was 18.7 α‐TE and 10.8 α‐TE for stone‐milled and roller‐milled wheat flour, respectively. The difference in total vitamin E content was primarily due to the absence of the germ and bran fractions in the roller‐milled flour. The total loss of vitamin E during storage was 24% for stone‐milled wheat flour but 50% for roller‐milled wheat flour. These results indicate that vitamin E, which is present in high amounts in wheat germ, functions as an antioxidant in the stone‐milled wheat flour. Hexanal formation showed that lipid oxidation in roller‐milled flour occurred just after milling, whereas the formation of hexanal in the germ fraction displayed a lack period of 22 days, confirming that vitamin E functions as an effective antioxidant in the wheat germ. Results showed no significant difference in total loss of vitamin E for stone‐milled and roller‐milled whole wheat flour. Total loss after 297 days of storage for both milling methods was ≈32%.  相似文献   

11.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

12.
Environmental concerns, the disposal cost of hazardous waste, and the time required for extraction in current methods encouraged us to develop an alternate method for analysis of wheat flour lipids. Supercritical fluid extraction (SFE) with carbon dioxide has provided that medium and the method is fully automatic. Crude fats or nonstarch free lipids (FL) were extracted from 4–5 g of wheat flour by an SFE system. To develop optimum conditions for SFE, various extraction pressures, temperatures, and modifier volumes were tried to provide a method that would produce an amount of lipids comparable to those extracted by the AACC Approved Soxhlet Method and the AOCS Official Butt Method using petroleum ether as solvent. Using several wheat flour samples, the best conditions were 12.0 vol% ethanol (10.8 mol%) at 7,500 psi and 80°C to extract the amount of FL similar to those by the AACC and AOCS methods. Using solid‐phase extraction, lipids were separated into nonpolar lipid (NL), glycolipid (GL), and phospholipid (PL) fractions. The mean value of five flours was 1.15% (flour weight, db) by the SFE method, 1.07% by the Butt method, and 1.01% by the Soxhlet methhod. The SFE‐extracted lipids contained less NL and more GL than either the Butt or Soxhlet methods. All three methods extracted lipids with qualitatively similar components. The overall benefit for SFE over the Soxhlet or Butt methods was to increase the number of samples analyzed in a given time, reduce the cost of analysis, and reduce exposure to toxic chemicals.  相似文献   

13.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

14.
Relationships among soft wheat quality parameters relating to sponge cake volume and sensory tenderness were investigated. Sixteen soft wheats from the 2008–2009 crop and 11 from the 2009–2010 crop, including Japanese soft wheat cultivars, advanced breeders' lines, and western white wheat imported from the United States, were milled and evaluated for protein content, sucrose solvent retention capacity value, specific surface area, flour pasting properties, batter pasting viscosity, sodium dodecyl sulfate sedimentation (SDSS) volume, farinograph properties, specific cake volume, and sensory tenderness score to investigate their relationships. Batter pasting viscosity was measured with a Rapid Visco Analyzer (RVA) at 2 min after reaching 90°C in heating a mixture with equal weights of flour, sucrose, and water. RVA minimum viscosity of flour suspension in water was the most influencing factor and positively correlated to specific cake volume, and RVA batter pasting viscosity and SDSS volume were negatively correlated. Meanwhile, protein content and SDSS volume were strongly negatively correlated with sensory tenderness score. Stepwise multiple regression analysis selected protein content and specific cake volume as independent variables to predict sensory tenderness score; however, SDSS volume and farinograph properties relating to protein strength were not selected. Protein content affected sponge cake tenderness independently of specific cake volume, which was related to differences in cake density.  相似文献   

15.
The practical applications of flour from waxy (amylose‐free) hexaploid wheat (Triticum aestivum L.) were assessed. The applications evaluated were bread, cakes, white salted noodles, and pasta for gyoza. An excessive addition of waxy hexaploid wheat flour to total wheat flour (>20%) resulted in poorer functional properties (sticky, lumpy, or less crispy textures) in almost every end use product. However, incorporation of <20% waxy hexaploid wheat flour, produced considerable improvement in shelf‐life characteristics. After one day of storage, the bread from flour including waxy hexaploid wheat flour maintained moistness, softness, and stickiness. This application of waxy hexaploid wheat flour as an antistaling ingredient was also confirmed in cake products. Tests were also conducted on alimentary pasta products. In alimentary pasta, waxy hexaploid wheat flour was most effective when utilized for frozen fried dumplings (gyoza). By using flour including 30 or 50% waxy hexaploid wheat flour, the problem of firmness was solved without other ingredients. In conclusion, flour from waxy hexaploid wheat may be useful in developing more increased staling‐ and freezing‐tolerant grain‐based foods. Starch properties could be responsible for these improved characteristics.  相似文献   

16.
Flour swelling tests have been widely used to assess the intercultivar differences in starch properties. This note describes a modified flour swelling test which uses ≈30 mg of flour. It avoids the use of a high-temperature water bath, and does not require a set of uniform and leak-proof tubes. The modified procedure offers a simpler and more rapid alternative to those previously reported, and provides a similar level of discrimination and precision. It is particularly suitable as a micro-scale early generation test for wheat flour swelling properties.  相似文献   

17.
Gluten aggregation properties were investigated by means of the GlutoPeak device, a viscometer recently proposed as a rapid and sensitive test for measurement of wheat flour technological performance. In this study, 62 soft wheat flour samples of different quality and end use were utilized to evaluate if the GlutoPeak parameters could adequately predict chemical and rheological characteristics of soft wheat flour dough, that is, protein content measured by the Kjeldahl method, dough strength measured by a Chopin alveograph, and dough stability and water absorption measured by a Brabender farinograph. Linear correlation analysis showed that most GlutoPeak curve parameters were strongly correlated with protein content, dough strength, and water absorption. The statistical models, obtained by a stepwise multiple regression method, showed the GlutoPeak device to be a promising tool to characterize wheat flour (Radj2 = 0.84 for protein content, Radj2 = 0.71 for dough strength, and Radj2 = 0.67 for water absorption). The rather high accuracy of the prediction models for the three mentioned parameters confirmed that GlutoPeak parameters are well correlated with other frequently used flour quality parameters and are able to describe flour technological performance.  相似文献   

18.
19.
The highly variable environmental conditions across the Pacific Northwest (PNW) influence the milling and baking quality of wheat grain produced in this region. This study was conducted to compare the flour composition, dough rheology, and baking quality of soft and hard spring wheat grain produced in diverse environments. Thirteen soft and five hard spring wheat cultivars were grown at Lind, WA (semiarid) and Fairfield, WA (high precipitation) for three years. Grain was evaluated for flour composition, rheology, and experimental baked product quality. Flour composition, rheological properties, and baking qualities were primarily influenced by the environment. Protein contents, microSDS values, and water absorption levels were significantly (P < 0.0001) higher for all cultivars grown at Lind compared with those from Fairfield. Cookie diameters were larger (P < 0.0001) for soft flours from Fairfield, whereas loaf volumes were higher (P < 0.0001) for hard wheat flours from Lind. Results indicate that producing soft or hard wheat outside of its optimal climatic zone reduces experimental baked product quality.  相似文献   

20.
Wheat protein quantity and composition are important parameters for wheat baking quality. The objective of this study was to use fractionation techniques to separate the proteins of flour mill streams into various protein fractions, to examine the distribution of these protein fractions, and to establish a relationship between protein composition and breadmaking quality. Nine break streams, nine reduction streams, and three patent flours obtained from three samples of Nekota (a hard red winter wheat) were used in this study. A solution of 0.3M NaI + 7.5% 1-propanol was used to separate flour protein into monomeric and polymeric proteins. The protein fractions, including gliadin, albumin+globulin, HMW-GS, and LMW-GS, were precipitated with 0.1M NH4Ac-MeOH or acetone. The fractions were statistically analyzed for their distribution in the mill streams. The quantities of total flour protein and protein fractions in flour were significantly different among mill streams. The ratio of polymeric to monomeric proteins in break streams was significantly greater than in the reduction streams. The relationship between protein composition and breadmaking quality showed that the quantities of total flour protein, albumin+ globulin, HMW-GS, and LMW-GS in flour were significantly and positively correlated with loaf volume. The ratio of HMW-GS to LMW-GS had little association with loaf volume. The gliadin content in total flour protein was negatively and significantly correlated with loaf volume. These results indicated that the quantity and composition of protein among the mill streams was different, and this resulted in differences in breadmaking quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号