首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of added calcium hydroxide (0.0, 0.15, 0.25, and 0.35%) and processing conditions, feed moisture content (mc) (16, 18, and 20%) and barrel temperature (130 and 150°C) on characteristics of corn meal extrudates were studied. Extruder screw speed was maintained at 130 rpm. Corn meal was extruded with a single-screw extruder (Brabender model GNF 1014/2) with a screw compression ratio of 3:1. The highest values (P < 0.05) for radial expansion and the lowest values for density and breaking force of extrudates were found for the treatment with 0.00% calcium hydroxide extruded at 16% feed mc and 130°C barrel temperature. This treatment was statistically different from the other treatments. Best values for radial expansion of samples extruded with added calcium hydroxide were for the samples with 0.15% calcium hydroxide at 18% feed mc and 130°C barrel temperature, followed by the sample with 0.35% calcium hydroxide at 16% feed mc and 130°C barrel temperature. Water absorption index and water solubility index were affected by calcium hydroxide and extrusion conditions evaluated. Extrudates had large numbers of flattened and sheared granules. Increases in calcium hydroxide increased extrudate yellowness. The combined action of calcium hydroxide and extrusion conditions completely modified the organized structure of the starch and suggest the formation of a starch-calcium complex (crystalline region). The texture of the extruded products was crispy after puffing.  相似文献   

2.
Corn starch was extruded with a corotating twin-screw extruder (24:1 L/D ratio, 31-mm screw diameter) and supercritical CO2 was injected as a blowing agent. The effects of barrel temperature (80–90°C), screw speed (150–250 rpm), and water injection (30–54 g/min) on specific mechanical energy (SME) input for the process and the physical properties of extrudates, such as expansion ratio, water absorption (WA), water solubility (WS), breaking stress, and elastic modulus, were examined using a response surface methodology. Barrel temperature had the greatest effect on physical properties of extrudates but not on SME input, whereas screw speed and water injection had significant effects on SME input. Extrudates had a smooth surface, and air cells were uniform and closed, providing low WA and WS. Using superimposed contour plots, optimum barrel temperature, screw speed, and water injection rate, based on maximum expansion ratio and minimum SME input, were 94–96°C, 155–175 rpm, and 36–39 g/min, respectively.  相似文献   

3.
This study was conducted to investigate the production of balanced diets for juvenile yellow perch (Perca flavescens) feeds. Six isocaloric (≈3.21 kcal/g), isonitrogenous (30.1 ± 0.4% db) ingredient blends were formulated with 0, 10, 20, 30, 40, and 50% distillers dried grains with solubles (DDGS), and appropriate amounts of soybean meal, fish meal, vitamins, and minerals. Extrusion cooking was performed using a laboratory‐scale single‐screw extruder at a constant barrel temperature profile of 40–90–100°C, and a constant screw speed of 230 rpm (24.1 rad/sec). The mass flow rate was determined during processing; it generally increased with progressively higher DDGS content. Additionally, moisture content, water activity, unit density, expansion ratio, compressive strength, compressive modulus, pellet durability index, water stability, and color were extensively analyzed to quantify the effects of DDGS content on the physical properties of the resulting extrudates. Significant differences (P < 0.05) between blends were observed for color and water activity for both the raw material and extrudates, respectively, and for the unit density of the extrudates. There were significant changes in brightness (L), redness (a), and yellowness (b) among the final products when increasing the DDGS content of the blends. Expansion ratio and compressive strength of the extrudates were low. On the other hand, all blends showed high pellet durability (PDI ≥ 96.18%). Overall, it was ascertained that DDGS could be successfully included at rates of <50%, and that each of the ingredient blends resulted in viable, high quality extrudates.  相似文献   

4.
The viscoelastic properties of glutinous rice flour extruded at moisture contents of 45–55% and barrel temperatures of 75–95°C have been investigated using a small amplitude oscillatory rheometer. High moisture contents (50 and 55%) resulted in product temperatures 3–5°C lower than the barrel temperatures. It appeared that the moisture content was a key element in influencing the value of G′ and tan δ. Raising product temperature reduced the difference in G′ caused by the moisture content. When the product temperature was >85°C, the extrudates yielded a similar degree of gelatinization despite the difference in moisture content. Meanwhile, both G′ and G″ decreased due to the disintegration of starch granules. The relationship between the energy input, measured as specific mechanical energy, and the viscoelastic properties was also assessed.  相似文献   

5.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

6.
《Cereal Chemistry》2017,94(3):385-391
Extrusion expansion characteristics of commercially available whole flours from three green pea varieties (Ariel, Aragorn, and Daytona) and three yellow pea varieties (Carousel, Treasure, and Jetset) were investigated with a corotating twin‐screw extruder. Feed moisture content was kept constant at 15 ± 0.5% (wb). Two barrel temperature levels of 140 and 160°C and three screw speed levels of 150, 200, and 250 rpm were studied. A round die with an opening of 3 mm was used. The radial expansion ratio (ER) of whole pea extrudates was 2.75–3.34. It was shown that the varieties had a significant impact on the expansion properties. Daytona green pea had a significantly greater ER compared with all other varieties (P < 0.05) within the conditions studied. ER was also found to have a positive linear correlation with screw speed. The microstructure of extrudate cross‐sections showed that the samples with greater expansion had more uniform and relatively small pore structure. The results show the importance of using the specific varieties of peas for optimum expansion during extrusion.  相似文献   

7.
Fractions rich in indigestible carbohydrates, such as fructan and arabinoxylan, are obtained as by‐products when ethanol, starch, and gluten are produced from wheat flour. Today, these fractions are used as animal feed. However, these components may have positive physiological effects in humans. In this study, the content of indigestible carbohydrates in distillers' grains and process streams from the wet fractionation of wheat flour was determined. The fractions were further characterized by ethanol extractability analysis, anion‐exchange chromatography, NMR, and size‐exclusion chromatography. One fraction from wet fractionation contained (g/100 g, db) 6.0 ± 1.0 fructan and 10.3 ± 1.1 dietary fiber (66 ± 4% arabinoxylan), while distillers' grains contained 20.7 g/100 g (db) dietary fiber (30% arabinoxylan). In addition to indigestible carbohydrates from wheat, distillers' grains contained β‐(1→3) and β‐(1→6) glucans and mannoproteins from the yeast and low molecular weight carbohydrates mainly composed of arabinose. The use of endoxylanase in wet fractionation decreased the molecular weight of the arabinoxylans and increased the arabinose to xylose ratio but had no effect on the fructans. In conclusion, waste streams from industrial wheat processing were enriched in fructan, arabinoxylan, and other indigestible carbohydrates. However, the physiological effects of these fractions require further investigation.  相似文献   

8.
Antibodies specific for wheat proteins were used to identify protein fractions modified during extrusion of Hard Red Spring wheat flour (14% protein) under four different combinations of extrusion conditions (18 and 24% feed moisture and 145 and 175°C die temperature). Antibody binding was assessed on immunoblots of proteins extracted from flour and extrudates separated by SDS‐PAGE. Antibodies to high molecular weight glutenin subunits (HMW‐GS) and to B‐group low molecular weight glutenin subunits (LMW‐GS) recognized intact subunits from both flour and extrudates. Antibodies to C‐group LMW‐GS had diminished binding to extruded proteins. Glutenin‐specific antibodies also recognized protein in the extrudates migrating as a smear at molecular weights higher than intact subunits, indicating cross‐linked proteins. Antibodies recognized albumins or globulins in flour but not in extrudates, evidence that these fractions undergo significant modification during extrusion. Acid‐PAGE and antibody reaction of gliadins extracted in 1M urea and in 70% ethanol revealed total loss of cysteine‐containing α, β, γ‐gliadins but no obvious effects on sulfur‐poor ω‐gliadins, suggesting gliadin modification involves replacing intramolecular disulfides with intermolecular disulfide cross‐links. Identifying protein fractions modified during different extrusion conditions may provide new options for tailoring extrusion to achieve specific textural characteristics.  相似文献   

9.
A series of cross‐linked hydroxypropylated corn starches were extruded with a Leistritz micro‐18 co‐rotating extruder. Extrusion process variables including moisture (30, 35, and 40%), barrel temperature (60, 80, and 100°C), and screw design (low, medium, and high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches showed a gel phase with distorted granules and granule fragments after extrusion at 60°C. After extrusion at 100°C only a gel phase was observed with no granular structures remaining. High performance size exclusion chromatography (HPSEC) equipped with multiangle laser light‐scattering (MALLS) and refractive index (RI) detectors showed extruded starches degraded to different extents, depending on extrusion conditions. The average molecular weight of the amylopectin of unextruded native corn starch was 7.7 × 108. Extrusion at 30% moisture, 100°C, and high shear reduced the molecular weight of amylopectin to 1.0 × 108. Hydroxypropylated normal corn starch extruded at identical conditions showed greater decreases in amylopectin molecular weight. With the addition of cross‐linking, the amylopectin fractions of the extruded starches were less degraded than those of their native and hydroxypropylated corn starch counterparts. Similarly, increasing moisture content during extrusion lowered amylopectin degradation in the extruded starches. Increasing temperature during extrusion of cross‐linked hydroxypropylated starches at high moisture content (e.g., 40%) lowered amylopectin molecular weights of the extruded starches, whereas increasing extrusion temperature at low moisture content (30%) resulted in less degraded molecules. This difference was attributed to the higher glass transition temperatures of the cross‐linked starches.  相似文献   

10.
Three streams of corn dry-milled products (corn grits, corn cones, and corn flour) were sieved and separated according to average diameter, and some segregated fractions were ground to produce nine streams. Corn grits were separated to produce grits with diameters of 1.19 and 0.841 mm, and selected fractions were ground into grits with average diameters of 0.297 and 0.210 mm. Corn cones were separated into average diameters of 0.595, 0.420, and 0.297 mm. Corn flour was separated into fractions with average diameters of 0.297 and 0.210 mm. The original and the additional streams were extruded at constant speed (50 rpm) and at three different processing extruder barrel temperature profiles: low (LTP, 100-110-120°C), medium (MTP, 110-120-130°C), and high (HTP, 120-130-140°C). The least significant difference (P < 0.01) test showed that additional grinding of corn grits affects the expansion ratio of extrudates processed at LTP and HTP. Additional separation of corn flour affects (P < 0.01) the bulk density and water solubility index of extrudates at HTP. At HTP, corn cones with diameters of 0.595 mm had significantly (P < 0.01) higher torque, specific mechanical energy, and die pressure than did the original corn cone extrudates without separation.  相似文献   

11.
In this study, the structure and selected properties of zeins extracted from corn gluten meal (CGM) pretreated by extrusion and removal of starch were investigated. The structure and properties of the zeins from pretreated CGM changed significantly. Pretreatments can decrease the extraction yields of zeins and change the granule shape and size of zein aggregates. The studies indicated that extrusion and removal of starch can significantly decrease the thermal enthalpy (ΔH1 and ΔH2) of zein from 1.94 ± 0.20 to 0.19 ± 0.10 and from 107.20 ± 0.80 to 78.62 ± 2.30 and J/g, respectively. The SDS‐PAGE results confirmed that the molecular weight of zeins from CGM was 24,000 and 27,000, and the molecular weight of zeins did not change with the pretreatment. On the other hand, the circular dichroism spectroscopy results showed that the processing of extrusion and removal of starch can change the secondary structure content of β‐sheets and β‐turns; these results indicated that extrusion and removal of starch can significantly break the secondary structure of zeins. Furthermore, extrusion and removal of starch can change the sulfhydryl content of zeins. The obtained results provided some fundamental information that is useful for further modification of CGM to improve its functional properties and industrial applications.  相似文献   

12.
The variability present in 20 plants of Capparis decidua (Forssk.) Edgew. (ker, family Capparaceae) from Fatehpur region of Rajasthan was investigated using different nutritional, biochemical and molecular parameters. Moisture content, crude protein, proline, total carbohydrate, starch, vitamin C, soluble sugar, crude fat, crude fiber, NDF, hemi cellulose, cellulose, lignin, ash, phosphorous, magnesium, iron, zinc, copper, sodium, potassium, cobalt, manganese, and calcium were estimated. Seventeen primers were used for random amplified polymorphic DNA (RAPD) analysis. A total 72 band positions were obtained using RAPD, of which 64 being polymorphic generated 87.6% polymorphism. Jaccard’s similarity coefficients ranged from 26 to 78.4%. The analysis of various biochemical and mineral constituents revealed that fruits are rich in carbohydrates (63.06 ± 4.20%) and protein (23.34 ± 4.38%) with high amount of potassium (3.23 ± 0.13%). The Manhattan dissimilarity coefficient obtained on the basis of biochemical and chemical analysis, ranged from 61 to 98%. The biochemical and RAPD based phylogenetic clustering were not correlated. Nevertheless, RAPD was found to be more efficient in estimating the diversity as compared to biochemical and chemical parameters.  相似文献   

13.
《Cereal Chemistry》2017,94(1):74-81
In Brazil, rice (Oryza sativa L.) and beans (Phaseolus vulgaris L.) are the basis of the population's diet, and their consumption together is a good strategy to improve protein biological value. The aim of this study was to produce extruded products with whole red bean (WRBF) and polished rice (PRF) flours and to evaluate the effects of extrusion temperature (T) and feed moisture content (FM) on technological properties and total phenolic compounds content. The extrudates were elaborated in a twin‐screw extruder following a 22 central composite rotatable design with FM (15–23%) and T (120–160°C) as independent variables. WRBF and PRF were used at a 1:3 ratio. Amino acid content and profile were evaluated in the optimum extrudate (produced at FM = 19% and T = 140°C). The total phenolic content identified in extruded products was provided by the red bean seed coat, and its quantification suggested the release of bound phenolics with the extrusion process (not temperature dependent). The extrusion of PRF and WRBF, in combination, produced extruded products of high protein quality, being complete in essential amino acids for the diets of people at least 48 months old. The results indicate that legume flours such as WRBF incorporated into rice flour can cause a positive impact on technological, nutritional, and functional quality of extrudates.  相似文献   

14.
Waxy maize starch was treated by a variety of gentle and severe methods: direct dispersion-solubilization into 90% dimethyl sulfoxide (DMSO) and H2O solvent, extrusion followed by dispersion-solubilization of the ground exudate into solvent, or jet-cooking or stirred autoclaving of an aqueous starch slurry followed by transfer into solvent. Intrinsic viscosities [η] and multiangle light-scattering measurements were made in 90% DMSO-H2O. A Mark-Houwink relation, [η] = (0.28–1.2) Mw0.29 ± 0.04, was obtained over a molecular weight range of ≈30–700 million. However, there was a large amount of scatter in the data when [η] were >140 mL/g. The power law relationship RgMw0.41±0.04 was noted between radii of gyration and molecular weights. We infer from our data that over the entire range of Mw distributions, the amylopectin existed in solution as relatively compact molecules or aggregates and that in the higher molecular weight region, the size and possibly the shape of the “dissolved” amylopectin was highly sensitive to the method of dispersal and treatment.  相似文献   

15.
Response surface methodology was employed to study the functional properties of starch acetate foams blended with 0, 7.5, and 15% wood, oat, and cellulose fibers. The blends were extruded with 14, 17, and 20% ethanol as a blowing agent, using a twin‐screw extruder with 160°C barrel temperature and 225 rpm screw speed. Physical characteristics of the extrudates including radial expansion ratio, unit density, and bulk density; and mechanical properties including unit spring index and bulk spring index were determined. Scanning electron micrographs were taken to observe foam cell textures. Higher fiber content resulted in lower radial expansion. Ethanol content had a positive effect on foam expansion. Higher expansion was obtained in starch acetate‐cellulose foams because better starch acetate‐fiber matrix was formed. Mechanical properties increased with higher fiber and ethanol contents. Micrographs showed that uniform cell structures were associated with better mechanical properties.  相似文献   

16.
Normal (25% amylose) and high-amylose (70% amylose) corn starches (CS and HA) were hydroxypropylated to 0.1 degree of molar substitution (MS) with propylene oxide in an alkaline-ethanol medium (70% ethanol). CS and hydroxypropylated corn starch (HPCS) were mixed on dry basis with water and glycerol at a weight ratio of 7:2:1, and HA and hydroxypropylated high amylose corn starch (HPHA) were mixed at 7:3:1. Stearic acid, glycerol monostearate, or lecithin (3%, based on starch) was added to each mixture to examine the effects on the physical properties of the extrudate. The starch mixtures were extruded at high shear (100 rpm) to nonexpanded strands using a corotating twin-screw extruder in a temperature range of 75–90°C. HA, alone and with all additives, showed lower die swelling in extrusion than did CS, whereas HPCS and HPHA showed higher die swelling than the corresponding unmodified starches. Water absorption of all HA extrudates was lower than those of all CS extrudates (22–35% and 68–97%, respectively, at 25°C). Hydroxypropylation increased the absorption for both starches. All extruded starches, regardless of additives, showed low solubility in water (0.1–1.0% for 2 hr at 25°C). Differential scanning calorimetry indicated that during extrusion, the lipid additives formed a helical complex with amylose in CS and HA, but weakly with HPCS and HPHA. The extruded strands of HA, alone and with additives, exhibited higher tensile and bending strengths (37.1–58.4 and 2.16–5.07 MPa, respectively), compared to the CS strands (12.5–59.3 and 1.06–4.10 MPa, respectively) at the same moisture content (7.5–8.5%). Both tensile strength and percent of elongation of the starch strands were reduced by the presence of a lipid additive. Hydroxypropylation increased elongation and flexibility of the extrudates. HPHA exhibited the greatest mechanical strength and flexibility among the tested starches.  相似文献   

17.
Lentil flour was extruded at die temperatures of 135, 160, and 175 degrees C. The soluble protein content in the extrudates decreased by 40.1% in the extracting buffer (1% sodium dodecyl sulfate in 50 mM sodium phosphate buffer, pH 6.9) as the extrusion die temperature was increased to 175 degrees C. The most insoluble proteins in the extrudates extruded at die temperatures of up to 175 degrees C could be resolubilized by using sonication. The total disulfide content and sulfhydryl content in the extrudates decreased. The SDS-PAGEs showed that the molecular weight distribution of proteins in the lentil flour changed little before and after extrusion as well as during reduction. The results from this study show that the extrusion temperature had less effect on the solubility and molecular weight of the lentil proteins, which contain a lower level of cysteine residues than wheat proteins.  相似文献   

18.
Grains of two regular and two waxy barley cultivars were milled into break and reduction stream flours using a wheat milling mill, granulated to facilitate feeding and flow through the barrel, and extruded to form expanded products using a modified laboratory single‐screw extruder. As moisture content of barley granules decreased from 21 to 17%, the expansion index of extrudates increased from 1.81 to 2.68, while apparent modulus of compression work (AMCW) decreased from 17.1 × 104 to 7.8 × 104 N/m2. Break stream flours of both regular and waxy barley produced extrudates with higher expansion index (2.72–3.02), higher water absorption index (WAI), and lower AMCW than extrudates from reduction stream flours. Extrudates produced from regular barley had generally higher expansion and lower density than those produced from waxy barley. The specific mechanical energy (SME) was greater during extrusion of regular than of waxy barley. Barrel temperatures of 130, 150, and 170°C for the feeding, compression, and metering sections, respectively, resulted in higher SME, higher expansion index, lower water absorption index and lower AMCW of extrudates compared with a constant extruder barrel temperature of 160°C. Increased screw speed generally resulted in larger expansion index and increased WAI of extrudates. With increased feed rate from 89 to 96 g/min, the expansion index of extrudates decreased from 3.20 to 2.78 in regular barley and 3.23 to 2.72 in waxy barley, and harder extrudates were produced.  相似文献   

19.
The aim of this work was to study the effects of extrusion barrel temperature (75–140°C) and feed moisture (16–30%) on the production of third‐generation snacks expanded by microwave heating. A blend of potato starch (50%), quality protein maize (QPM) (35%), and soybean meal (SM) (15%) was used in the preparation of the snacks. A laboratory single extruder with a 1.5 × 20.0 × 100 mm die‐nozzle and a central composite routable experimental design were used. Expansion index (EI) and bulk density (BD) were measured in expanded pellets, viscosity at 83°C (V83), thermal properties, and relative crystallinity were measured in extruded pellets. EI increased and BD decreased when the barrel temperature was increased, while the feed moisture effect was not significant. V83 increased when feed moisture increased. Extrusion modified the crystalline structures of the pellets and the X‐ray data suggests the formation of new structures, probably due to the development of amylose‐lipid complexes. The maximum expansion of pellets was found at barrel temperatures of 123–140°C, and feed moisture of 24.5–30%. It is possible to obtain a functional third‐generation snack with good expansion characteristics using a microwave oven, and this snack has health benefits due to the addition of QPM and SM.  相似文献   

20.
Gluten-glycerol dough was extruded under a variety of processing conditions using a corotating self-wiping twin-screw extruder. Influence of feed rate, screw speed, and barrel temperature on processing parameters (die pressure, product temperature, residence time, specific energy) were examined. Use of flow modeling was successful for describing the evolution of the main flow parameters during processing. Rheological properties of extruded samples exhibited network-like behavior and were characterized and modeled by Cole-Cole distributions. Changes in molecular sizes of proteins during extrusion were measured by chromatography and appeared to be correlated to molecular size between network strands, as derived from the rheological properties of the materials obtained. Depending on operating conditions, extrudates presented very different surface aspects, ranging from very smooth-surfaced extrudates with high swell to completely broken extrudates. The results indicated that extrudate breakup was caused by increasing network density, and some gliadins may have acted as cross-linking agents. Increasing network density resulted in decreasing mobility of polymeric chains, and “protein melt” may no longer have been able to support the strain experienced during extrusion through the die. Increasing network density was reflected in increased plateau modulus and molecular size of protein aggregates. Increasing network structure appeared to be induced by the severity of the thermomechanical treatment, as indicated by specific mechanical energy input and maximum temperature reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号