首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study examined the effects of various cereal fibers and various amounts of β-glucan on cholesterol and bile acid metabolism. Hamsters were fed semisynthetic diets containing 0.12% cholesterol, 20% fat, and either 16% total dietary fiber (TDF) from wheat bran (control) or 10% TDF from oat bran, 13% TDF from oat bran concentrate or barley grains, 16% TDF from oat fiber concentrate, barley flakes, or rye bran. After five weeks, plasma total cholesterol and liver cholesterol concentrations were significantly lower (20 and 50%, respectively) only in hamsters fed rye bran. Diets containing any of the oat ingredients or barley had no effect on total cholesterol. Changes in the pattern of biliary bile acids occurred in hamsters fed 16% TDF from barley flakes or 10% TDF from oat bran. Hamsters fed rye bran had a significantly higher fecal bile acid excretion when compared with controls fed wheat bran. Because rye bran caused the most pronounced lowering effect of total cholesterol despite the lowest content of β-glucan and soluble fibers, components other than β-glucan and soluble fibers seem to be involved in its hypocholesterolemic action. Since the effects of the oat and barley ingredients were not solely correlated to the β-glucan content, structural changes occurring during processing and concentrating of the products may have impaired the hypocholesterolemic potential of the β-glucans, and other factors such as solubility and viscosity of the fiber components seem to be involved.  相似文献   

2.
Pearling by‐products and the pearled products of two commercial stocks of hulled barley, pearled according to an industrial process consisting of five consecutive pearling steps, were analyzed for β‐glucans, dietary fiber (total, soluble, and insoluble), protein, lipid, ash, and digestible carbohydrate. The data showed that the pearling flour fractions, abraded in the fourth and fifth hullers, contained interesting amounts of β‐glucans (3.9–5.1% db) from a nutritional point of view. These fractions were subsequently enriched in β‐glucans using a milling‐sieving process to double β‐glucan content (9.1–10.5% db). Functional pastas, enriched with β‐glucans and dietary fiber, were produced by substituting 50% of standard durum wheat semolina with β‐glucan‐enriched barley flour fractions. Although darker than durum wheat pasta, these pastas had good cooking qualities with regard to stickiness, bulkiness, firmness, and total organic matter released in rinsing water. The dietary fiber (13.1–16.1% wb) and β‐glucan (4.3–5.0% wb) contents in the barley pastas were much higher than in the control (4.0 and 0.3% wb, respectively). These values amply meet the FDA requirements of 5 g of dietary fiber and 0.75 g of β‐glucans per serving (56 g in the United States and 80 g in Italy). At present, the FDA has authorized the health claim “may reduce the risk of heart disease” for food containing β‐glucans from oat and psyllium only.  相似文献   

3.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

4.
The total alkylresorcinol (AR) content and relative homologue composition of 21 durum wheat (Triticum durum) kernel samples, as well as 5 pasta products and the corresponding flour mixtures, were determined. Durum wheat contained on average 455 microg/g ARs, and the average relative homologue composition was C17:0 (0.4%), C19:0 (14%), C21:0 (58%), C23:0 (21%), and C25:0 (6.5%). The homologue composition was found to be relatively consistent among samples, with durum wheat being different from common wheat by having a higher proportion of the longer homologues. No differences in content or homologue composition were observed in pasta products compared to flour ingredients, showing that alkylresorcinols are stable during pasta processing. The ratio of the homologues C17:0 to C21:0 was < or =0.02 for whole grain durum wheat products, which is different from those of common wheat (0.1) and rye (0.9).  相似文献   

5.
Lignans are of increasing interest because of their potential anticarcinogenic, antioxidant, estrogenic, and antiestrogenic activities. In this work, mixed‐cereal pastas manufactured by adding 60% whole‐grain flours of different cereals (wheat, oat, rye, barley, and rice) to durum wheat semolina, a multigrain pasta with different grains (cereals, legumes, and flaxseed), and a traditional industrial durum wheat semolina were analyzed for their lignans content both in the raw and in the cooked state, ready for consumption. For raw mixed‐cereal pastas, total lignans were within the range 94.91–485.62 μg/100 g d.w. After cooking, total lignans losses of about 35.5, 18.31, and 5.46% were observed respectively in oat‐, rye‐, and rice‐added pastas, whereas increases of 5.74 and 13.62% were observed in barley‐added and whole durum wheat pastas. Interesting results were obtained for the multigrain pasta: the raw product exhibited a total lignans content of 9,686.17 ± 287.03 μg/100 g d.w., and the major contribution was given by secoisolariciresinol. This highest total lignans value resulted from its rich and varied composition in seeds of different origin, legumes, and flaxseed in particular. Our findings showed that mixed‐cereal and multigrain pastas can be considered a good source of lignans. The effect of cooking was not the same for each product, and it depended on the different lignans profile of each grain, on the different chemical structure of each lignan, and on the nature of the food matrix.  相似文献   

6.
Food products that are high in fiber and low in glycemic impact are healthier. Amylose is a form of resistant starch that mimics dietary fiber when consumed. A durum wheat (Triticum durum) line was created that lacks starch synthase IIa (SSIIa) activity, a key enzyme in amylopectin biosynthesis, by identifying a null mutation in ssIIa‐B following mutagenesis of a line that has a naturally occurring ssIIa‐A null mutation. Our objective here was to compare seed, milling, pasta, and nutritional characteristics of the SSIIa null line with a wild‐type control line. The SSIIa null line had increased amylose and grain protein with lower individual seed weight and semolina yield. Refined pasta prepared from the SSIIa null semolina absorbed less water, had increased cooking loss, had a shorter cook time, and was considerably firmer even after overcooking compared with the wild‐type line. Color of the SSIIa null cooked and uncooked pasta was diminished in brightness compared with the wild type. Nutritionally, the SSIIa null pasta had increased calories, fiber, fat, resistant starch, ash, and protein compared with the control line, along with reduced total and available carbohydrates. Pasta made from high‐amylose durum wheat provides a significant nutritional benefit along with enhanced end‐product quality via firmer pasta that resists overcooking.  相似文献   

7.
Starches from the endosperm of three types of total‐waxy cereals (bread wheat, maize, and barley) were used in reconstitution studies of durum wheat semolinas to investigate the effect of waxy starch on pasta cooking quality. The chemical composition and the pasting and gelatinization properties of the starches used in this study were evaluated to define the functional properties of each waxy starch. The rheological properties of dough semolinas were evaluated by small‐scale mixograph. Spaghetti was prepared using a small‐scale pasta extruder and its cooking quality was assessed using a texture analyzer. Cooked pasta firmness, resilience, and stickiness were measured. The substitution of semolina starch with waxy starches from different sources changed the functional properties of dough and their pasta quality. A decrease in firmness was detected in all the semolinas reconstituted with waxy starches. An increase in stickiness was found when semolinas with waxy starch from wheat were evaluated. No improvement in pasta quality should be expected if the waxy character is introduced in durum wheat.  相似文献   

8.
The waxy character is achieved in durum wheat (Triticum turgidum L. var. durum) when the granule‐bound starch synthase activity is eliminated. The result is a crop that produces kernels with no amylose in the starch. The presence of two Waxy loci in tetraploid wheat permits the production of two partial waxy wheat genotypes. Advanced full and partial waxy durum wheat genotypes were used to study the effect of waxy null alleles on pasta quality. Semolina from full and partial waxy durum wheats was processed into spaghetti with a semicommercial‐scale extruder, and pasta quality was evaluated. Cooked waxy pasta was softer and exhibited more cooking loss than pasta made from traditional durum cultivars. These features were attributed to lower setback of waxy starch as measured with the Rapid Visco Analyser. High cooking loss may be due to the lack of amylose‐protein interaction, preventing the formation of a strong protein network and permitting exudates to escape. Waxy pasta cooked faster but was less resistant to overcooking than normal pasta. Partial waxy pasta properties were similar to results obtained from wild‐type pasta. This indicates that the presence of a single pair of functional waxy genes in durum wheat was sufficient to generate durum grain with normal properties for pasta production. Waxy durum wheat is not suitable for pasta production because of its softening effect. However, this property may offer an advantage in other applications.  相似文献   

9.
The viscosity of soluble fibers such as β-glucan depends on their concentration in solution and molecular weight (MW) distribution. We investigated whether freezing treatment of oat bran muffins affected the physicochemical properties of β-glucan, and its physiological effectiveness in lowering postprandial blood glucose response. A controlled range of β-glucan solubility was achieved by subjecting oat bran muffins containing two levels of β-glucan to repeated freeze-thaw temperature cycling. β-Glucan solubilized by in vitro digestion extraction was measured by flow-injection analysis. MW distributions of β-glucan were analyzed using size-exclusion chromatography. β-Glucan solubility decreased as the number of freeze-thaw cycles increased, while MW distribution of β-glucan decreased slightly. Peak blood glucose rise (PBGR) after fresh muffins (8 and 12 g of β-glucan/serving) was significantly lower than that after muffins (8 and 12 g of β-glucan/serving) treated with four freeze-thaw (FT) cycles (1.84 ± 0.2 vs. 2.31 ± 0.1 mmol/L, P = 0.007). Compared with the control whole wheat muffins, the reduction in incremental area under the glucose response curve (AUC) after fresh muffins (8 and 12 g of β-glucan/serving) was nearly twice that after 4 FT cycles (43.3 ± 4.4% vs. 27.0 ± 5.4%, P = 0.016). A significant inverse linear relationship was found between the log [concentration] of extractable β-glucan and PBGR (r2 = 0.85, P = 0.01), and AUC (r2 = 0.71, P = 0.03). The results show that reduction of β-glucan solubility in foods attenuates its physiological effectiveness in lowering postprandial glycemia.  相似文献   

10.
A pool of selected lactic acid bacteria was used to ferment durum wheat semolina under liquid conditions. After fermentation, the dough was freeze-dried, mixed with buckwheat flour at a ratio of 3:7, and used to produce the "fusilli" type Italian pasta. Pasta without prefermentation was used as the control. Ingredients and pastas were characterized for compositional analysis. As shown by two-dimensional electrophoresis, 92 of the 130 durum wheat gliadin spots were hydrolyzed almost totally during fermentation by lactic acid bacteria. Mass spectrometry matrix-assisted laser desorption/ionization time-of-flight and reversed phase high-performance liquid chromatography analyses confirmed the hydrolysis of gliadins. As shown by immunological analysis by R5-Western blot, the concentration of gluten decreased from 6280 ppm in the control pasta to 1045 ppm in the pasta fermented with lactic acid bacteria. Gliadins were extracted from fermented and nonfermented durum wheat dough semolina and used to produce a peptic-tryptic (PT) digest for in vitro agglutination tests on cells of human origin. The whole PT digests did not cause agglutination. Affinity chromatography on Sepharose-6-B mannan column separated the PT digests in three fractions. Fraction C showed agglutination activity. The minimal agglutinating activity of fraction C from the PT digest of fermented durum wheat semolina was ca. 80 times higher than that of durum wheat semolina. Pasta was subjected to sensory analysis: The scores for stickiness and firmness were slightly lower than those found for the pasta control. Odor and flavor did not differ between the two types of pasta. These results showed that a pasta biotechnology that uses a prefermentation of durum wheat semolina by selected lactic acid bacteria and tolerated buckwheat flour could be considered as a novel tool to potentially decrease gluten intolerance and the risk of gluten contamination in gluten-free products.  相似文献   

11.
The content and molecular weight (MW) of β-glucan in extracts from a selection of oat and barley cultivars were compared using flow-injection analysis and high-performance size-exclusion chromatography. From 60 to 75% of the β-glucan was extracted from oat and waxy barley by hot water (90°C) containing heat-stable α-amylase, whereas just 50–55% was extracted from nonwaxy barley. Consecutive extractions with hot water and dimethylsulfoxide (DMSO) extracted 65% (nonwaxy barley) or 75–80% (oat and waxy barley) of the total β-glucan. An extraction with sodium hydroxide and sodium borohydride (NaOH/NaBH4) increased the percentage of β-glucan extracted to 86–100% but decreased the MW. The MW of β-glucan in the oat cultivars selected was significantly higher than those in the barley cultivars. The β-glucan extracted from the nonwaxy barley cultivars showed significantly higher peak MW than that from the waxy barley cultivars.  相似文献   

12.
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat, with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage, impacting more the higher the SF concentration. SF had little to no effect on grain test weight, 1,000‐grain weight, hardness, protein content, semolina ash content, and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable, and other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour–commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production, but for the production of semolina, pasta, and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.  相似文献   

13.
It was previously reported that compared to triacylglycerol (TAG) oil, diacylglycerol (DAG) oil improves postprandial lipid response. However, the effects of DAG oil on postprandial hyperglycemia and incretin response have not yet been determined. In this study, the effects of DAG oil on both postprandial hyperlipidemia and hyperglycemia and the response to the glucose-dependent insulinotropic polypeptide (GIP) were studied. This randomized, double-blind, crossover study analyzed data for 41 individuals with high fasting triacylglycerol concentrations. The subjects ingested test meals (30.3 g of protein, 18.6 g of fat, and 50.1 g of carbohydrate) containing 10 g of DAG oil (DAG meal) or TAG oil (TAG meal) after fasting for at least 12 h. Blood samples were collected prior to and 0.5, 2, 3, 4, and 6 h after ingestion of the test meal. Postprandial TAG concentrations were significantly lower after the DAG meal compared with the TAG meal. Postprandial TAG, insulin, and GIP concentrations were significantly lower after the DAG meal compared with the TAG meal in 26 subjects with fasting serum TAG levels between 1.36 and 2.83 mmol/L. DAG-oil-based meals, as a replacement for TAG oil, may provide cardiovascular benefits in high-risk individuals by limiting lipid and insulin excursions.  相似文献   

14.
While consumption of diets high in fiber is perceived to result in undesirable gastrointestinal symptoms, the fermentation of undigested carbohydrate in the large intestine may, in fact, have beneficial health effects. In this study, we compared the effects of oats, barley, and their extracts with a glucose control for 24 hr on breath hydrogen and methane production as a marker of colonic fermentation and also assessed gastrointestinal symptoms. Nine men and 11 women (35–57 yr) consumed 1 g/kg of body weight of carbohydrate as glucose or 0.66 g/kg of body weight sugar and 0.33 g/kg of body weight as oat bran, barley flour, oat extract, or barley extract (Nu‐trimX) in a Latin square design. Expired alveolar breath samples were collected after instruction at fasting, 2, 4, 5, 6, 7, 8, 9, 10, and 24 hr after consumption of the test meals. All test meals increased breath hydrogen and methane (both P < 0.0001). Hydrogen, but not methane, responses to barley, oats, and extracts of each were higher (barley > oats, P < 0.05) than responses to glucose (P < 0.0001). Reported gastrointestinal symptoms were not related to specific test meals. Oats and barley, as well as their extracts, can be consumed in greater amounts by Americans to increase soluble fiber and lower fat intake, and thus lower risk factors for chronic disease.  相似文献   

15.
Recent breeding advances have led to the development of several barley lines and cultivars with significant reductions (50% or greater) in phytate levels. Low-phytate (LP) grain is distinguished by containing not only a reduced level of phytate P but also an increased level of inorganic P, resulting in greater bioavailability of P and mineral cations in animal diets. It is important to determine whether other nutritional characteristics are altered by breeding for the low-phytate trait. This study was designed to investigate if breeding for reduced phytate content in barleys had any effect on the contents of other attributes measured by comparing mean and range values of the levels of protein, oil, ash, total carbohydrate, starch, and β-glucan, fatty acid composition, and levels of tocopherols and tocotrienols between five LP and five normal-phytate barleys grown in three Idaho locations. Results show that only the phytate level in the LP group was substantially lower than that of the normal-phytate group and that all other attributes measured or calculated were substantially equivalent between the two groups of barleys. Therefore, the phytate level had little effect on the levels of protein, oil, ash, total carbohydrate, starch, and β-glucan, fatty acid composition, and levels of tocopherols and tocotrienols in barley seeds.  相似文献   

16.
Common wheat adulteration of durum wheat pasta was quantified using real‐time duplex polymerase chain reaction (PCR). The total DNA content of pasta was determined by amplifying part of a wheat gene encoding a lipid transfer protein, and common wheat DNA was quantified by amplifying part of the puroindoline‐b gene. Under the conditions defined by this study, for pasta with a theoretical adulteration of 3%, the experimentally determined mean value was 2.6–3.4%, depending on drying temperature. Pure durum wheat pastas were distinguished from adulterated pastas without ambiguity. This study demonstrates the feasibility of using real‐time duplex PCR to quantify common wheat adulteration of pasta dried at high temperature, quantification that was impossible with the French official peroxidase‐marker method.  相似文献   

17.
《Cereal Chemistry》2017,94(1):110-116
Pulse ingredients (pea and lentil flour, pea protein, and pea fiber) were incorporated into 94 different food products. Products included pastas, breads, crackers, extruded snacks, cookies, cereal bars, and muffins. Products were screened for estimated glycemic index using an in vitro method. Based on the screening results, five products (pasta, bread, cracker, granola bar, and cookie) were selected for in vivo glycemic index (GI) testing. For each control (containing 100% wheat flour), a pulse variant (containing up to 50% pulse ingredients) was developed. Ten healthy subjects consumed each test meal in addition to three control white bread meals on separate days during the in vivo GI testing. GI values of the control and pulse variant meals were 61.3 ± 5.1 versus 54.6 ± 7.6 (pasta), 61.4 ± 5.6 versus 53.4 ± 4.7 (focaccia bread), 46.0 ± 4.2 versus 41.5 ± 3.1 (cracker), 35.4 ± 3.6 versus 34.8 ± 5.0 (granola bar), and 41.6 ± 3.8 versus 37.6 ± 3.0 (cookie). The difference did not reach statistical significance (P > 0.05). Mean GI difference between control and pulse variant was 4.8 ± 2.6, with all pulse variants falling into the low GI category. Palatability scores showed no statistically significant difference (P > 0.05) between the control and pulse variant. The data support substituting wheat flour with pulse ingredients to reduce the GI value without changing palatability of the products.  相似文献   

18.
Hull-less barley (HB) has been investigated in many countries for use in feed, food, and industry since the publication of the last review in 1986. Literature published since 1990 on various aspects of HB utilization, other than in monogastric feeds, has been reviewed. Several HB cultivars containing low or β-glucan, low or high extract viscosity, and waxy (0–5% amylose) or normal starch are now available. Interest in HB utilization in the food industry developed largely due to its high β-glucan content, particularly in the waxy cultivars. β-Glucan is a major component of soluble fiber implicated in hypocholesterolemia, hypoglycemia, and in reducing incidence of chemically induced colon cancer in experimental animals. However, large-scale clinical trials using human subjects are needed to corroborate these effects. The zero amylose HB starch had low syneresis or a high freeze-thaw stability suitable for use in frozen foods. Single- or double-modified waxy HB starch may replace corn starch in some food applications, and cationized HB starch can replace corn and potato starches in the pulp and paper industry. HB may be milled using conventional wheat milling equipment to yield bran and flour for multiple food uses. Hull-less barley may also be used as a feed stock for fuel alcohol production, for the preparation of food malt with low or high enzyme activities, and for brewer's and distiller's malts.  相似文献   

19.
The in vitro starch digestion rate and estimated glycemic index (GI) of oat flours and oat starches from typical and high β-glucan oat lines were evaluated along with the impact of heating on starch digestion. Flour from oat lines ('Jim', 'Paul', IA95, and N979 containing 4.0, 5.3, 7.4, and 7.7% β-glucan, respectively) was digested by pepsin and porcine pancreatin. To determine the impact of heating on starch digestion, oat slurries were prepared by mixing oat flour and water (1:8 ratio) and heating for 10 min prior to digestion. Viscosity, as measured on a Rapid Visco Analyzer, increased with increases in concentration and molecular weight of β-glucan. The in vitro starch digestion of oat flours and a control, white bread made from wheat flour, increased as the digestion time increased. Starch digestion of oat flour was slower than that of the control (p < 0.05). Heat treatment of oat-flour slurries increased the starch digestion from a range of 31-39% to a range of 52-64% measured after 180 min of in vitro digestion. There were no differences in starch digestibility among oat starches extracted from the different oat lines. The GI, estimated by starch hydrolysis of oat flours, ranged from 61 to 67, which increased to a range of 77-86 after heating. Oat-flour slurries prepared from IA95 and N979 lines with high β-glucan concentrations had lower GI values than did slurries made from Jim and Paul lines. Starch digestion was negatively correlated with β-glucan concentrations in heated oat-flour slurries (R(2) = 0.92). These results illustrate that the oat soluble fiber, β-glucan, slowed the rate of starch digestion. This finding will help to develop new food products with low GI by using oat β-glucan.  相似文献   

20.
Criteria for durum wheat quality are continuously evolving in response to market pressure and consumer's preference. Specific attributes of durum wheat for different end products require more rapid and objective means to grade and classify wheat parcels based on processing potential. A total of 10 durum wheat cultivars were compared for compositional, protein, and starch characteristics. Mean values for the gross composition differed for total protein, gluten, and starch. Two-dimensional electrophoresis (2DE) analysis showed the proteome diversity among the cultivars. As shown by the principal component analysis (PCA) applied to 2DE data of gliadin and glutenin fractions, cultivars differed mainly from the number of proteins and levels of protein expression. As determined by the rapid viscoanalyzer (RVA), swelling power, starch damage, amylose content, and starch pasting properties of 10 cultivars differed significantly. 2DE fingerprinting and amylose content seemed to distinguish specific cultivars being useful tools for selecting suitable durum wheat cultivars for pasta making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号