首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β‐Glucan is known to have valuable properties for preventative health and is finding widespread use in foods. This study investigated the benefit of adding a commercial source of β‐glucan, Barley Balance (BB) flour, as a functional ingredient in spaghetti. Durum wheat semolina was substituted with BB at levels of 7.5, 15, and 20%, from which spaghetti was prepared on a laboratory scale. The substitution of BB increased the β‐glucan content of semolina from 0.3 to 6% in uncooked and 8% in cooked pasta. Antioxidant activity (measured by 2,2‐diphenyl‐1‐picrylhydrazyl) increased with BB and did not decline significantly on processing and cooking. Compared with the control, 7.5% BB had no or minimal effect on pasta cooking loss, stickiness, water absorption, aroma, and sensory texture. However, at higher doses, pasta became less yellow and more brown, firmer, of inferior aroma, more rubbery, and chewy, but less floury to the mouth. The extent of starch digestion decreased with increasing quantities of BB, suggesting that BB may lower glycemic index, with microscopy data suggesting that this decrease was mediated through the development of a more intensive fiber or fiber/protein matrix retarding enzymatic access to starch granules.  相似文献   

2.
3.
A new form of the mixed-linked (1→3),(1→4)-β-d -glucan has been obtained from barley grains using a new extraction and purification process that involves two key steps. A hot-water extraction of the β-glucan from the grain followed by a freeze and thaw of the extract. The commercial product from this process, called Glucagel, forms as a gelatinous or fibrous precipitate, which can be dried. Glucagel has novel functional properties. It forms soft thermoreversible, translucent gels that melt and set at temperatures of ≈60°C.  相似文献   

4.
The cholesterol-lowering effect of cereal grains has been associated with the soluble fiber component of dietary fiber. β-Glucan is the major soluble fiber component of barley (Hordeum vulgare L.) and oat (Avena sativa L.). Much research has been conducted to determine the β-glucan content of barley and oat genotypes from many different countries. However, genotypes of both crops always were grown in separate experiments, making direct comparisons between the two crops difficult. This study compares in the same experiment the β-glucan content of nine barley and 10 oat genotypes grown at two locations in each of two years (i.e., four environments) in North Dakota. Averaged across genotypes, total β-glucan content of barley and oat groat was similar. Soluble β-glucan content of oat groat was greater than barley, and oat groat had a greater ratio of soluble-to-total β-glucan than barley. The soluble β-glucan content and ratio of soluble to total β-glucan content of the “best” barley genotypes were less than that of oat genotypes with the highest levels of these two traits.  相似文献   

5.
Random inbred lines were produced from a cross between the genotypes Chalky Glenn and Waxy Hector, and two-row lines were classified as waxy or nonwaxy by an iodine staining test. Mean nitrogen and β-glucan contents of the waxy types were higher than those of the nonwaxy types but, in contrast to previous data, mean milling energies of the two groups were not significantly different. Waxy lines with low milling energy had much lower β-glucan levels than those with high milling energy, and they also demonstrated much more extensive cell wall modification during malting. From a trial grown the following season, the waxy types with low milling energy were again identified and had levels of β-glucan content similar to those of nonwaxy types. β-Glucan contents and, particularly, milling energies showed good agreement between seasons. It is suggested that, although waxy starch is usually associated with high β-glucan content, a genetic factor from Chalky Glenn that confers low levels of β-glucan can express in a waxy background.  相似文献   

6.
Cereal β-glucan can function as a thickener, but endogenous β-glucanase enzymes of the grain cleave β-glucan, reducing its viscosity. Although different extraction techniques have been developed, the viscosity stability of β-glucan gum has not been reported. The objective of this study was to investigate the effect of extraction treatments on the yield, purity, and viscosity stability of barley β-glucan (BBG) gum. A regular barley cultivar, Condor, and a waxy cultivar blend were extracted at pH 7–10 and 55°C for 0.5 hr. Four extraction conditions were evaluated: 1) extraction at high pH with no additional heat treatment; 2) boiling of extract; 3) prior refluxing of flour with 70% ethanol; and 4) treatment of extract with thermostable α-amylase for purification. Viscosity of extracts was monitored for ≥24 hr at 25°C. The highest β-glucan purities were achieved with a boiled Condor extract at pH 7 (81.3% db, 4.1% yield) and with refluxed waxy barley extracted at pH 8 and treated with α-amylase and (79.3% db, 5.1% yield). Gums extracted without subsequent heat treatment or prior refluxing of flour had high protein (>17%) and starch (>24%) impurities, respectively. The viscosity of gums obtained without heating was unstable. Prior refluxing treatment was not sufficient to stabilize final extracts. Boiling extracts resulted in stable but low viscosity. Reflux followed by purification treatment produced the highest stable viscosity for 0.5% solutions of both Condor (64 mPa sec-1, pH 7) and waxy (48.8 mPa sec-1, pH 8) extracts. Stable BBG gum with high viscosity can be obtained using thermal treatments in combination with high pH. The potential use of such gums as thickeners in food systems needs to be assessed.  相似文献   

7.
8.
Data on the quality of durum wheat genotypes grown under eight environments (site-year combinations) were evaluated to determine the relative effects of genotype and environment on quality characteristics associated with gluten strength, protein content, and pasta texture. The 10 durum wheat genotypes assessed in this study represented a range of gluten strength types from the very strong U.S. desert durum genotype, Durex, to the medium strength Canadian genotype, Plenty. Considerable genetic variability was detected for all quality characteristics studied. Genotype-environment interaction was significant for all quality parameters evaluated, with the exception of mixograph development time. Genotypeenvironment interaction was most important in determining protein content and least important in determining gluten index, gluten viscoelasticity, and SDS sedimentation volume. The nature of the genotype-environment interaction was evaluated by determining the number of significant crossover (rank change) interactions. There was at least one significant crossover interaction between pairs of genotypes and environments for five of eight quality traits tested. Of 45 genotype pairs, eight and six showed significant crossover interactions for protein content and pasta disk viscoelasticity, respectively. Significant crossover interactions were at least partially due to the differential response of Canadian genotypes as compared with U.S. genotypes. With the exception of protein content and pasta disk viscoelasticity, our results suggest that among the selected sample of 10 genotypes, genotype-environment interactions were minor and due primarily to changes in magnitude rather than changes in rank.  相似文献   

9.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

10.
Oat bran muffins, containing 4 or 8 g of β‐glucan per two‐muffin serving, were prepared with or without β‐glucanase treatment to produce a range of β‐glucan molecular weights from 130,000 to just over 2 million. Following an overnight fast, the glycemic responses elicited by the untreated and treated muffins was measured in 10 healthy subjects and compared with a control whole wheat muffin. Taken all together, the 4‐g β‐glucan/serving muffins reduced blood glucose peak rise (PBGR) by 15 ± 6% compared with the control. The 8‐g β‐glucan/serving muffins had a significantly greater effect (44 ± 5% reduction compared with the control, P < 0.05). The efficacy of the muffins decreased as the molecular weight was reduced from a 45 ± 6% reduction in PBGR (P < 0.05) for the untreated muffins (averaged of both serving sizes) to 15 ± 6% (P < 0.05) for muffins with the lowest molecular weight. As the molecular weight was reduced from 2,200,000 to 400,000, the solubility of the β‐glucan increased from a mean of 44 to 57%, but as the molecular weight was further decreased to 120,000, solubility fell to 26%. There was a significant correlation (r2 = 0.729, P < 0.001) between the peak blood glucose and the product of the extractable β‐glucan content and the molecular weight of the β‐glucan extracted.  相似文献   

11.
β-Glucanase activity interferes with molecular characterization of mixed-linkage (1→3)(1→4)-β-d -glucans (β-glucans). Reductions in β-glucanase activity were determined after barley cvs. Azhul, Waxbar, and Baronesse were treated with autoclaving (120°C, 45 min), calcium chloride (0.05M, 1 hr), 70% ethanol (80°C, 4 hr), hydrochloric acid (0.1N, 1 hr), oven heating (120 and 140°C, 40 min), sodium hydroxide (0.0025M, 1 hr), and 5% trichloroacetic acid (TCA) (40°C, 1 hr). High-performance size-exclusion chromatography (HPSEC) of α-amylase-treated aqueous extracts was used to demonstrate the effects of treatments on the molecular weights of β-glucans. The HPSEC system included multiple-angle, laser light scattering, refractive index, and fluorescence detectors. β-Glucanase activities, ranging from 52 to 65 U/kg of barley, were reduced by autoclaving (50–75%), hot alcohol (67–76%), oven heating (40–96%), CaCl2 (75–95%), NaOH (76–89%), and TCA (92–96%). Some malt β-glucanase activity remained after most treatments. HCl and TCA treatments reduced extraction and molecular weights of β-glucans. Weight-average molecular weights (Mw) for β-glucans extracted with water at 23°C were low (most <8 × 105). Base treatment (pH 9) and extraction at 100°C for 2.5 hr resulted in the greatest extraction of β-glucans and highest Mw. As a result, the conditions seem appropriate for measurement of physical characteristics of β-glucans in cereal products.  相似文献   

12.
Starch and protein are the main polymeric ingredients of pasta and they determine the structural and textural properties of cooked pasta. The present investigation sought better understanding of the impact of high‐temperature (HT) drying on the starch and the protein fraction, and their role in structure and texture of pasta. Durum wheat spaghetti was prepared in a pilot‐plant installation. The drying conditions were selected for the HT phase at 80 or 100°C applied at high, intermediate, or low product moisture content. Spaghetti dried at 55°C served as a reference sample. The color of dry pasta was measured and the changes in the starch and protein fractions were determined by protein solubility, light microscopy, confocal scanning laser microscopy (CSLM), cooking tests, and texture measurements. HT drying at 100°C and low product moisture promoted browning of pasta. At the molecular level, HT drying promoted protein denaturation. At the microscopic level, HT drying contributed to a better preservation of the protein network and reduced swelling of starch and disintegration of granules. At the macroscopic level, HT drying enhanced the firmness of cooked pasta and reduced surface stickiness. In general, the changes were more pronounced by increasing the drying temperature from 80 to 100°C and by shifting the HT phase from an early to a late stage of the drying process. The drying conditions are determinant for the phase morphology of protein and starch in cooked pasta which, in turn, govern the textural properties of pasta.  相似文献   

13.
Fusarium head blight (FHB) is one of the major diseases of wheat (both common and durum wheat) caused by various fungi including Microdochium nivale and different Fusarium species. Most of the Fusarium species associated with FHB (mainly F. graminearum, F. culmorum and F. sporotrichioides), under favourable environmental conditions, can produce various toxic secondary metabolites (mycotoxins) that can contaminate grains. The major Fusarium mycotoxins that can occur in wheat and derived products are deoxynivalenol, nivalenol, T‐2 and HT‐2 toxins, and zearalenone. Processing has generally significant effects on the levels of mycotoxins in the final products. Deoxynivalenol is typically concentrated in the bran coat which is removed in the production of semolina; consequently, a consistent reduction of deoxynivalenol levels has been observed during each of the processing steps, from raw durum wheat to pasta production. To allow monitoring programs and protect consumers' health, several analytical methods have been developed for Fusarium mycotoxins, based on chromatographic or immunometric techniques. The European Union has established maximum permitted levels for some Fusarium mycotoxins in cereals and cereal‐based products (including unprocessed durum wheat, bran, wheat flour, and pasta). Recommendations for the prevention and reduction of Fusarium mycotoxins contamination in cereals based on identification of critical risk factors and crop management strategies have been published by the Codex Alimentarius and the European Commission.  相似文献   

14.
It is well known that gluten plays a major role in determining cooking quality in durum wheat pasta. This work is an attempt to systematically elucidate the role of gluten quantity and nature in determining cooking quality as a function of the drying cycle used in the manufacturing process. Gluten and starch were fractionated from two durum wheat cultivars possessing good and poor gluten quality. Either of them were then added back to the original base semolina to alter its protein content and to produce two semolina series with identical protein contents. Semolinas were processed into pasta and dried following three drying programs (low, medium, and high temperature). Cooking quality was determined with sensorial, chemical, and instrumental methods. The results indicate that optimum cooking time is governed by gluten quality. The positive effect on cooking quality of increasing gluten contents and of the application of HT drying is evident in weak gluten samples, but it is not significant in the strong gluten samples.  相似文献   

15.
Food products that are high in fiber and low in glycemic impact are healthier. Amylose is a form of resistant starch that mimics dietary fiber when consumed. A durum wheat (Triticum durum) line was created that lacks starch synthase IIa (SSIIa) activity, a key enzyme in amylopectin biosynthesis, by identifying a null mutation in ssIIa‐B following mutagenesis of a line that has a naturally occurring ssIIa‐A null mutation. Our objective here was to compare seed, milling, pasta, and nutritional characteristics of the SSIIa null line with a wild‐type control line. The SSIIa null line had increased amylose and grain protein with lower individual seed weight and semolina yield. Refined pasta prepared from the SSIIa null semolina absorbed less water, had increased cooking loss, had a shorter cook time, and was considerably firmer even after overcooking compared with the wild‐type line. Color of the SSIIa null cooked and uncooked pasta was diminished in brightness compared with the wild type. Nutritionally, the SSIIa null pasta had increased calories, fiber, fat, resistant starch, ash, and protein compared with the control line, along with reduced total and available carbohydrates. Pasta made from high‐amylose durum wheat provides a significant nutritional benefit along with enhanced end‐product quality via firmer pasta that resists overcooking.  相似文献   

16.
Fermentation by human fecal bacteria of fractions of wheat bran prepared by preprocessing technology were examined and compared with a β‐glucan‐rich oat bran and a purified β‐glucan (OG). The wheat fractions were essentially a beeswing bran (WBA), mainly insoluble dietary fiber, and an aleurone‐rich fraction (WBB) containing more soluble fiber and some β‐glucan (2.7%). The oat bran (OB) had more endosperm and was very rich in β‐glucan (21.8%). Predigestion of WBB and OB to mimic the upper gastrointestinal (GI) tract gave digested wheat bran fraction B (WBBD) and digested oat bran (OBD), respectively. These predigested fractions were fermented in a batch technique using fresh human feces under anaerobic conditions. Changes in pH, total gas and hydrogen production, short chain fatty acids (SCFA), and both soluble and insoluble β‐glucan and other polysaccharide components, as determined from analysis of monosaccharide residues, were monitored. Fractions showed increasing fermentation in the order WBA < WBBD < OBD < OG. Variations in SCFA production indicated that microbial growth and metabolism were different for each substrate. Polysaccharide present in the supernatant of the digests had disappeared after 4 hr of fermentation. Fermentability of oat and wheat β‐glucan reflected solubility differences, and both sources of β‐glucan were completely fermented in 24 hr. Although the overall patterns of fermentation indicated the relative amounts of soluble and insoluble fiber, the anatomical origin of the tissues played a major role, presumably related to the degree of lignification and other association with noncarbohydrate components.  相似文献   

17.
Barley β‐glucan concentrate shows great potential as a functional food ingredient, but few product applications exist. The objectives of this study were to formulate a functional beverage utilizing barley β‐glucan concentrate, and to make a sensory evaluation of beverage quality in comparison to pectin beverages and to assess shelf stability over 12 weeks. Three beverage treatments containing 0.3, 0.5, and 0.7% (w/w) barley β‐glucan were developed in triplicate. Trained panelists found peely‐ and fruity‐orange aroma and sweetness intensity to be similar (P > 0.05) for all beverages tested. Beverage sourness intensity differed among beverages (P ≤ 0.05). Panelists evaluated beverages containing 0.3% hydrocolloid as similar (P > 0.05), whereas beverages with 0.5 and 0.7% β‐glucan were more viscous (P ≤ 0.05) than those with pectin at these levels. Acceptability of beverages was similar according to the consumer panel. Shelf stability studies showed no microbial growth and stable pH for all beverages over 12 weeks. Colorimeter values for most beverages decreased (P ≤ 0.05) during the first week of storage, mostly stabilizing thereafter. With an increase in concentration, β‐glucan beverages became lighter in color (P ≤ 0.05) and cloudier, but these attributes for pectin beverages were not affected (P > 0.05). β‐Glucan beverages exhibited cloud loss during the first three weeks of storage. β‐Glucan can therefore be successfully utilized in the production of a functional beverage acceptable to consumers.  相似文献   

18.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

19.
Common wheat adulteration of durum wheat pasta was quantified using real‐time duplex polymerase chain reaction (PCR). The total DNA content of pasta was determined by amplifying part of a wheat gene encoding a lipid transfer protein, and common wheat DNA was quantified by amplifying part of the puroindoline‐b gene. Under the conditions defined by this study, for pasta with a theoretical adulteration of 3%, the experimentally determined mean value was 2.6–3.4%, depending on drying temperature. Pure durum wheat pastas were distinguished from adulterated pastas without ambiguity. This study demonstrates the feasibility of using real‐time duplex PCR to quantify common wheat adulteration of pasta dried at high temperature, quantification that was impossible with the French official peroxidase‐marker method.  相似文献   

20.
The effect of partial gelatinization with and without lipid addition on the granular structure and on α‐amylolysis of large barley starch granules was studied. The extent of hydrolysis was monitored by measuring the amount of soluble carbohydrates and the amount of total and free amylose and lipids in the insoluble residue. Similarly to the α‐amylolysis of native large barley starch granules, lipid‐complexed amylose (LAM) appeared to be more resistant than free amylose and amylopectin. Partial gelatinization changed the hydrolysis pattern of large barley starch granules; the pinholes typical of α‐amylase‐treated large barley starch granules could not be seen. Lipid addition during partial gelatinization decreased the formation of soluble carbohydrates during α‐amylolysis. Also free amylose remained in the granule residues and mostly amylopectin hydrolyzed into soluble carbohydrates. These findings indicate that lysophospholipid (LPL) complexation with amylose occurred either during pretreatment or after hydrolysis, and free amylose was now part of otherwise complexed molecules instead of being separate molecules. Partial gelatinization caused the granules to swell somewhat less during heating 2% starch‐water suspensions up to 90°C, and lipid addition prevented the swelling completely. α‐Amylolysis changed the microstructure of heated suspensions. No typical twisting of the granules was seen, although the extent of swelling appeared to be similar to the reference starch. The granules with added LPL were partly fragmented after hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号