首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt was made to understand the physicochemical attributes that are the basis of physical differences between alkaline and salted noodle doughs. Flour and dough properties of one soft and three hard‐grained wheat cultivars were observed. Doughs were made with either sodium chloride or sodium carbonate. Each formulation variant was tested at both high and low water additions. Samples for glutenin macropolymer (GMP) isolation were taken at selected noodle dough processing stages. When a 1.67% w/v Na2CO3 solution was used for mixograph testing, dough characteristics were radically altered and differences between cultivars were masked. In lubricated squeezing flow (LSF) testing, hard wheat noodle doughs had significantly (P < 0.01) longer relaxation times and higher % residual force values than soft wheat doughs in both the salted and alkaline variants. LSF maximum force and biaxial viscosity were significantly higher in alkaline doughs than salted. GMP extracted from alkaline doughs was gummy and sticky, and was more opaque than GMP from salted doughs. GMP weight decreased sequentially when extracted from samples taken in the active phase (mix, compound, sheet) of noodle dough processing and decreased more in alkaline doughs. GMP weight increased more after 24 hr of dough rest in salted doughs. GMP gel strength was noticeably higher in GMP extracted from alkaline doughs. After dough resting, alkaline GMP gel strength significantly increased, whereas it decreased in GMP from salted doughs, suggesting a role for GMP in the increased stiffness of alkaline noodle doughs.  相似文献   

2.
The uniaxial elongational and shear rheology of doughs varying in either the protein content or glutenin‐to‐gliadin ratio were investigated. Increasing the protein content at constant glutenin‐to‐gliadin ratio increased the strain‐hardening properties of the dough, as shown by increasing elongational rupture viscosity and rupture stress. Glutenin and gliadin had a more complex effect on the elongational properties of the dough. Increased levels of glutenin increased the rupture viscosity but lowered the rupture strain, while elevated gliadin levels lowered the rupture viscosity but increased the rupture strain. These observations provide rheological support for the widely inferred role of gliadin and glutenin in shaping bread dough rheology, namely that gliadin contributes the flow properties, and glutenin contributes the elastic or strength properties. The shear and elongational properties of the doughs were quite different, reflecting the dissimilar natures of these two types of flow. Increasing protein content lowered the maximum shear viscosity, while increasing the glutenin‐to‐gliadin ratio increased maximum shear viscosity. Strong correlations between the results of basic and empirical rheology were found. These basic, or fundamental, rheological measurements confirmed prior empirical studies and supported baking industry experience, highlighting the potential of basic rheology for bread and wheat research.  相似文献   

3.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

4.
Cookie diameter is a function of spread rate and set time during baking. Dough viscosity appears to control cookie spread rate and, thus, will affect final cookie diameter. The technique of lubricated uniaxial compression was used to measure the elongational viscosity of cookie dough. Full-formula cookie doughs made with a commercial hard wheat flour had a significantly higher elongational viscosity (5.88 × 106 ± 9.17 × 104 Pa·S) than cookie doughs made with a commercial soft wheat flour (2.17 × 106 ± 1.05 × 104 Pa·S). Elongational viscosity correlated significantly (P < 0.05) with the diameter (r = -0.796) of cookies made with flours from various soft wheat cultivars. Using a simplified cookie formula decreased the testing time without greatly changing the correlation coefficient (r = -0.738). Thus, lubricated uniaxial compression appears to be an appropriate technique to measure the viscosity of cookie doughs and may be useful for predicting the cookie baking quality of soft wheat flours.  相似文献   

5.
The flows encountered during the sheeting process contain a more extensional component and more stretching than simple shear. Evaluating the properties of the extensional rheological flow of wheat flour dough is essential to better understand the sheeting process and the final quality of the product. Our results show that the curves of biaxial extensional viscosity versus extensional strain rate for dough from different wheat cultivars including Dark Northern Spring (DNS), Hard Red Winter (HRW), and Western White Wheat (WW) with protein contents of 7.81–18.09% and water contents of 32–40% could be discriminated. During a lubricated compression test, the sheeted dough displayed a region of extensional thickening followed by a region of mild extensional thinning, giving rise to an s-shaped extensional stress-strain rate curve. The higher degree of extensional thinning was exhibited for the sheeted dough prepared from the flour of DNS and HRW wheat mixture with an extensional thinning index of n = 0.65–0.74; while the lower degree of extensional thinning was displayed for the DNS wheat with an extensional thinning index of n = 0.89–0.96. The data of biaxial extensional viscosity (ηBmax) versus water content and protein content could be described by power relationships. The results suggest that biaxial extensional viscosity can be a useful modeling and process design parameter that objectively represents the rheological properties during dough sheeting.  相似文献   

6.
Farinography and mixography are two commonly used procedures for evaluating dough properties. These procedures, however, cannot separate hydration and energy input during dough development, both of which are critically important for understanding fundamental rheological properties of dough. A rheometer and laser scanning confocal microscopy (LSCM) were used to study the relationship between rheological properties and microstructural characteristics of developed (by farinograph with both shear and extensional deformations), of partially developed (by rheometer with either shear or extensional deformation), and of nondeveloped (no deformation) dough samples of wheat flours. Rheological data revealed that developed dough had the highest G* (most elastic or strong), followed by doughs partially developed with extensional deformation, and then shear deformation, and finally by nondeveloped dough. The LSCM z‐sectioning (scanning of different layers of the sample) and the analysis of amount of protein matrix showed that developed dough had the most protein matrix and nondeveloped dough had the least protein matrix. It also showed that the higher the G*, the greater the protein network. Moreover, the type of deformation appeared to contribute to the development of protein matrix and further increase the dough strength. In this study, a combination of shear and extensional deformations by farinograph produced the most protein matrix and the strongest dough, followed by extensional deformation, shear deformation, and then no deformation.  相似文献   

7.
The rheology of yeasted bread doughs is a little‐studied field despite yeast's importance in developing bread structure. A method of thermally inactivating the yeast within mixed bread doughs was developed to overcome the difficulty of yeast fermenting during rheological measurements. Sample stabilization by preshearing of dough samples at a stress amplitude of 1 Pa at 1 Hz for 10 sec improved the reliability of small amplitude oscillatory shear measurements, and resting 20 min within the rheometer was sufficient to produce reliable and consistent observations. Small amplitude oscillatory shear measurements were unable to detect any differences between yeasted and nonyeasted doughs nor any changes in linear viscoelastic properties due to fermentation. However, large strain uniaxial elongation measurements of yeasted doughs revealed a significant progressive decrease in elongational viscosities with fermentation. Size‐exclusion HPLC analysis of yeasted doughs showed an increase in unextractable polymeric dough proteins, which were interpreted as evidence of cross‐linking and therefore a potential improvement in dough properties. The apparent contradictions between uniaxial elongation and SE‐HPLC studies of fermenting yeasted doughs can be attributed to gas bubbles within the dough interrupting the increasingly cross‐linked protein network, resulting in the rheological weakness observed for fermenting yeasted doughs.  相似文献   

8.
The rheological properties of 17 pure European wheat cultivars were analyzed and evaluated in relation to the bread volume. Rheological testing included two empirical rheological methods, farinograph and alveograph, and more fundamental creep‐recovery experiments at shear stresses of 100 and 250 Pa. Principal component analysis on the farinograph and alveograph results showed that a wide range of rheological properties was present among the wheat cultivars. Correlation analysis pointed out that creep‐recovery parameters showed significant correlations with protein content, Zeleny sedimentation value, farinograph water absorption, alveograph extensibility, and bread volume. Among the rheological parameters, maximum recovery strain at a shear stress of 250 Pa showed the highest significant correlation with the bread volume (r = 0.790**). Variables were combined to predict the bread volume by multiple linear regression. A combination of protein content, farinograph water absorption, and alveograph P/L showed the best prediction (r2 = 0.80). When taking into account the creep‐recovery parameters, the best prediction of the bread volume (r2 = 0.74) was obtained for a combination of the maximum recovery strain at a shear stress of 250 Pa with one other quality parameter (Zeleny sedimentation value, farinograph water absorption, or alveograph W).  相似文献   

9.
The effects of vacuum mixing on the structural characteristics and physical properties of noodle dough were investigated using three leading Chinese wheat cultivars. Texture profile analysis showed that vacuum mixed doughs when sheeted all gave significantly higher levels of adhesiveness, elasticity, and chewiness than doughs from nonvacuum mixing. The cross section of sheeted dough mixed at 0.06 MPa had a more continuous and compact microstructure with fewer holes and gaps, as well as more even protein distribution at the surface, as evidenced by scanning electron microscopy and Fourier transform infrared microimaging. However, a higher degree of vacuum was detrimental to the developed network for weak dough. Dough mixed at 0.06 MPa had higher glutenin macropolymer content and lower free thiol group concentration compared with nonvacuum mixed doughs, which may largely relate to the improvement of dough texture. The development of the gluten network for weak gluten flour was more sensitive to the degree of vacuum.  相似文献   

10.
Growers are targeting hard red spring wheat (Triticum aestivum L.) (HRSW) for frozen dough end uses. Consequently, it is important to determine whether increasing nitrogen (N) fertilizer rates and grain protein content (GPC) improve frozen dough quality. Four HRSW cultivars were grown in low‐N soils at three locations over two years in North Dakota and fertilized with N rates of 0 kg/ha, 67.2 kg/ha, and 134.4 kg/ha. End use characteristics were analyzed using farinograph, extensigraph, and baking tests. Fresh and frozen doughs were analyzed to determine the effects of N treatments on frozen storage. A cultivar × N treatment interaction existed for extensigram curve area of fresh dough. A significant increase in GPC existed between the 0 and 67.2 kg/ha N treatments. Farinograph water absorption, arrival times, and peak times increased significantly at the 67.2 kg/ha N treatment. Bread loaf volume of fresh dough increased significantly with all treatments, while loaf volume of frozen dough increased significantly only at the 67.2 kg/ha N treatment. Therefore, aside from fresh dough loaf volume, there appears to be no improvement in frozen dough quality with the use of higher than typical N application.  相似文献   

11.
不同品种小麦粉的粉质特性对速冻熟制面条品质的影响   总被引:2,自引:3,他引:2  
为研究不同品种小麦粉与速冻熟制面条质构特性之间的关系,选取30种小麦制粉,用FOSS定氮仪、快速黏度仪、粉质仪和拉伸仪等测定面粉品质指标,制作速冻熟制面条,用质构仪测定质构特性。采用描述性统计、主成分和聚类分析方法对30种小麦面粉和速冻熟制面条的质构关系进行了分析。结果表明:不同品种小麦粉的湿面筋、糊化温度、弱化度、粉质质量指数与硬度呈极显著相关(P0.01);蛋白质、湿面筋、总淀粉含量、最终黏度、回生值、糊化温度、粉质吸水率、粉质曲线稳定时间、面团形成时间、弱化度、粉质质量指数、拉伸曲线面积、拉伸阻力、最大拉伸阻力与剪切力呈极显著相关(P0.01);小麦粉的粉质特性,除衰减值、峰值时间和延伸度外,均与拉伸力呈极显著相关(P0.01)。根据方差贡献率提取出可以反映原变量84.023%信息的5个因子,因子1主要反映面粉的粉质拉伸特性,因子2反映小麦粉糊化特性,因子3反映蛋白质特性,因子4和因子5共同反映小麦粉的淀粉特性。这些性状在小麦粉的评价方面起着重要作用,在加工中要注重对它们的选择。聚类分析将30种小麦粉分为4类,结果表明,不能仅凭小麦粉的指标数据和质构数据来选择制作速冻熟制面条的原料,还需考虑到感官评价的影响。该结论可为小麦粉在速冻熟制面条加工应用方面提供一定的理论参考。  相似文献   

12.
The effect of flour type and dough rheology on cookie development during baking was investigated using seven different soft winter wheat cultivars. Electrophoresis was used to determine the hydrolyzing effects of a commercial protease enzyme on gluten protein and to evaluate the relationships between protein composition and baking characteristics. The SDS‐PAGE technique differentiated flour cultivars based on the glutenin subunits pattern. Electrophoresis result showed that the protease degraded the glutenin subunits of flour gluten. Extensional viscosities of cookie dough at all three crosshead speeds were able to discriminate flour cultivar and correlated strongly and negatively to baking performance (P < 0.0001). The cookie doughs exhibited extensional strain hardening behavior and those values significantly correlated to baking characteristics. Of all rheological measurements calculated, dough consistency index exhibited the strongest correlation coefficient with baking parameters. The degradation effects of the protease enzyme resulted in more pronounced improvements on baking characteristics compared with dough rheological properties. Stepwise multiple regression showed that the dough consistency index, the presence or absence of the fourth (44 kDa) subunit in LMW‐GS and the fifth subunit (71 kDa) subunit in HMW‐GS were predominant parameters in predicting cookie baking properties.  相似文献   

13.
The viscoelastic properties of durum wheat flour doughs were measured using the extensigraph in uniaxial extension and the Rheometrics mechanical spectrometer in oscillatory shear. The research examined the effect of increasing density of cross-links on rubber elasticity in these systems. The stress-strain behavior of durum wheat flour dough was not well simulated by Mooney-Rivlin type nonlinear elasticity. Addition of increasing amounts of iodate made the dough show appreciable strain thickening behavior, approximating the behavior of natural rubbers The estimated apparent molecular weight between cross-links ranged from 10,500 to 16,000, much larger than that of rubbers, for which values are in the range of 500–1,000. When the Mooney-Rivlin equation was tested, it appeared to approximate only moderately well the extensional behavior of iodate-added wheat flour doughs at finite but low extensions, where the finite extensibility of chains is not a factor. It is hypothesized that the cross-linked network is highly diluted with hydrogen and hydrophobic bonds that limit the applicability of rubberlike elasticity theories. Increasing the cross-linked density using iodic acid developed matrices that moved the behavior of durum flour doughs closer to Mooney-Rivlin behavior.  相似文献   

14.
The changing rheological characteristics of wheat doughs during fermentation at 30°C for 72 hr were measured using a controlled stress rheometer. Dynamic oscillation tests were performed at frequencies ranging from 0.01 to 10 Hz. Wheat sourdoughs (dough yield 200) were prepared with a mixed starter culture containing typical hetero- and homofermentative sourdough lactic acid bacteria. Results from the controlled fermentation process were compared to results from spontaneous fermentation. Maximum phase angle values, especially at low frequencies, were closely related to total gas production in the doughs. Complex viscosity decreased during fermentation and reached lower final values for doughs without starter culture. Heating characteristics of doughs after various fermentation times were measured at temperatures ranging from 30 to 80°C. The highest values for complex viscosity were found at ≈65°C. When heated, fermented doughs produced weaker gels than fresh doughs. The temperatures at which these maxima occurred increased significantly with fermentation time for spontaneously fermented dough.  相似文献   

15.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities.  相似文献   

16.
To clarify the effects of solid fat and liquid oil on dough in more detail in a simpler system, gluten‐starch doughs with different gluten contents were investigated. The results from rheological measurements indicate that dough with a higher starch content has less resistance to strain and dough with a lower starch content has a rubber‐like structure. The effects of the physical state of nonpolar lipids such as fat and oil on gluten‐starch doughs and wheat flour doughs were investigated using rheological measurements and scanning electron microscopy. Fat‐containing dough had more gas cells and a very smooth gluten gel surface with few holes, which may provide higher tolerance to strain. Moreover, the fat seemed to uniformly distribute the gluten gel between the starch granules in the dough, which reduced the friction between starch granules and led to a lower storage modulus. A mechanism governing the effect of fats on loaf volume is proposed based on the phenomena observed in the fat‐containing dough.  相似文献   

17.
Characterization of the rheological properties of wheat flour dough during mixing and baking without modifying its structure or mechanical properties is not easy. In this work, the effect of dough setting pre‐orientation and strain orientation during characterization are assessed for differently structured wheat flour doughs (various water contents and addition of glucose oxydase). Rheological properties were measured in dynamic shear as rotational (CSL2100 fitted with a cone‐plate geometry) or radial (CP20 fitted with a plate‐plate geometry) small deformation mode and in lubricated squeezing flow and relaxation called large deformation mode. In comparison with radial shearing, rotational shearing induces a much larger preorientation of the network and thus a strain‐hardening phenomenon that affects the rheological measurements (storage modulus is overestimated) but relaxes, at least partially, during a rest period. Consequently, a longer period of time has to be allotted (allowing stress relaxation) before starting measurements. Plate‐plate geometry induces less preorientation and allows measurement a few minutes after setting. However, it has less discrimination of the differently structured dough than the cone‐plate geometry used in rotational mode. Results which partially agree with those of the CP20 are obtained using the lubricated squeezing flow followed by stress relaxation.  相似文献   

18.
Refrigerated doughs develop syruping upon prolonged storage. To assess the role of arabinoxylans (AX), in this phenomenon, the evolution of the AX population and syruping in refrigerated doughs during storage were studied. When doughs were kept at 6 degrees C for up to 34 days of storage, dough syruping increased from 0% (fresh dough) to 22% of dough weight, reaching a plateau after 16 days of storage. High-performance size exclusion chromatography and gas-liquid chromatography showed hydrolysis of water-unextractable AX in the refrigerated dough, resulting in increased levels of solubilized AX in the first 2 days of storage. Longer storage resulted in further degradation of solubilized and water-extractable AX. Increased syruping was accompanied by a decrease in farinograph dough consistency. The results support the hypothesis that loss of water-holding capacity due to degradation of AX by endogenous xylanases is responsible for dough syruping.  相似文献   

19.
The effect of mixing time (6 and 20 min) and starch content were studied on doughs prepared with three wheat flours differing in high molecular weight subunit composition. Rheological measurements were performed in dynamic oscillation: frequency and strain sweeps, stress relaxation, and in large deformation viscosity measurements. The flours were diluted with starch to cover flour protein contents of 10–15%. Water was added to keep the starch‐water ratio constant when doughs were prepared with different protein contents. By increasing the starch content of the doughs, the rheological properties approached those of a starch‐water mixture prepared with the same starch‐water ratio as in the dough. The effect of the starch granules was reinforced by prolonged mixing. This may explain the higher values of the storage modulus and relaxation times observed after 20 min of mixing. Qualities related to gluten properties, appeared more clearly in large deformation viscosity measurements.  相似文献   

20.
Investigations were made to test the effect of two different sourdough starter culture types on wheat dough and bread quality. Two single‐strain starter cultures consisting of well‐defined strains of lactic acid bacteria (Lactobacillus plantarum, L. brevis) and a traditional mixed‐strain sourdough culture (containing L. crispatus, L. pontis, and Saccharomyces cerevisiae) were evaluated for their effects on the rheological characteristics of wheat dough using both fundamental rheological and standard baking tests. Two other doughs were also evaluated, one which was chemically acidified to a comparable pH value by the addition of lactic acid, and a control which was not acidified. Dynamic oscillation tests were performed using a controlled stress rheometer. The phase angle and the absolute value of the complex dynamic modulus were measured for all doughs at frequencies of 0.1–10 Hz. The addition of sourdough prepared using single‐strain or mixed‐strain cultures significantly increased the phase angle and reduced the complex modulus of the doughs at all frequencies (P < 0.05). Significant differences were found between the dough which was chemically acidified and those doughs which were biologically acidified. The addition of sourdough effected an increase in loaf specific volume relative to both the chemically acidified and the nonacidified doughs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号