首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dough development using sheeting and mechanical dough development (MDD) were compared with respect to the effect the mixing method had on the molecular size distribution and degree of protein thiol exposure of the aggregated glutenin proteins. Although sheeting imparts a lower rate of work input on doughs than does MDD mixing, changes in protein aggregation patterns during mixing were similar for both methods of dough development, indicating that protein disaggregation was important in the process of dough development. In both systems, a reduced rate of change in the protein aggregation patterns was associated with optimum dough development. The MDD mixing was characterized by increasing exposure of the thiol groups on the SDS‐insoluble glutenin during mixing while the sheeting process resulted in fewer exposed thiol groups on both SDS‐soluble and SDS‐insoluble glutenin proteins. This suggested that disulfide bond rupture may not be a required process in dough development and that high effective stresses per se may not be required to develop doughs. This is consistent with a model for dough development that does not require extensive covalent bond rupture but instead involves mainly rupture and reformation of noncovalent interactions such as hydrophobic bonds and hydrogen bonds between protein chains.  相似文献   

2.
The objective of this study was to examine treatments that directly influence Norwegian lean doughs destined to be frozen. Therefore a strip-block experimental design with four dough treatment factors (wheat flour blend, diacetyl tartaric acid esters of monoglycerides [DATEM], water absorption, and dough temperature) and two storage factors (frozen storage time and thawing time) was used. Four levels were selected for frozen storage time and two levels were selected for the remaining factors. After frozen storage (2–70 days), the doughs were thawed and baked. Principal component analysis showed that to obtain a high loaf volume and bread score after freezing, a high dough temperature after mixing (27°C) was essential. The highest form ratio (height/width) level was obtained after 28 days of frozen storage and with a short thawing time (6 hr). Analysis of variance (ANOVA) of dough treatments showed that an increase in dough temperature from 20 to 27°C after mixing resulted in a significant increase in loaf volume (1,653 to 2,264 mL), form ratio (0.64 to 0.69), and bread score (1.7 to 3.2), and a reduction in loaf weight (518.4 to 512.5 g) and crumb score (7.9 to 5.9, i.e., a more open bread crumb). Also, the addition of DATEM significantly increased loaf volume (1,835 to 2,081 mL), form ratio (0.64 to 0.69), and bread score (2.2 to 2.6). Frozen dough storage time significantly affected loaf volume, loaf weight, bread score, and crumb score. Increasing thawing time from 6 to 10 hr significantly increased loaf volume (1,855 to 2,121 mL), and reduced the form ratio (0.69 to 0.63) and loaf weight (516.8 to 511.4 g). ANOVA of the interaction between dough treatment and frozen storage time showed that decreasing water absorption significantly increased the loaf volume.  相似文献   

3.
Mixing is critical to attainment of a desirable gas cell distribution in dough. By varying mixer headspace pressure, changes in the mechanical properties of dough were investigated as a function of the dough's void concentration using low frequency (50 kHz) ultrasonic techniques. For the mixer used, this allowed the volume fraction of voids (Φ) to be varied from ≈0.01 to 0.08. The ultrasonic attenuation of longitudinal waves increased linearly with increases in Φ. If, as reported, pressure reductions during mixing decrease the number density of the voids but do not affect void size, the change in attenuation is proportional to the number of voids. By contrast, the velocity of longitudinal ultrasonic waves decreased dramatically with increasing Φ in the range 0.012 < Φ < 0.03, dropping from a value near that of water to values well below the velocity of sound in air. At higher Φ, the velocity decrease was less rapid. The longitudinal elastic modulus determined from these ultrasonic results shows that the mechanical properties of the dough are sensitive to the presence of gas bubbles. At low void fractions, the elastic behavior of dough is also influenced by changes in dough matrix properties.  相似文献   

4.
Isoelectric protein concentrates (IPC) were prepared from one buckwheat (Fagopyrum esculentum) and five Amaranthus genotypes. Their effect on the mixing properties of a wheat flour was studied. Mixograph and dynamic oscillatory measurements showed significant increases in dough strength with the addition of 2 and 4% IPC, correlated to the water-insoluble fraction level of the IPC. The same IPCs were used at 2% level to supplement a wheat flour in making Chinese dry noodles. Measurable changes in both the raw and cooked noodle color were observed, and the change caused by addition of buckwheat IPC was substantial. Some of the IPCs caused an increase in cooking loss and only one caused an increase in weight, while increase in volume of the cooked noodles was not significantly affected. The changes in the rheological properties of cooked noodles due to addition of IPCs were measured. Overall, their effects were favorable, but the changes were statistically significant in only a few cases. The substantial dough-strengthening effect of the IPCs was hence not effectively translated into improved cooked noodle quality, and possible reasons for this are discussed.  相似文献   

5.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

6.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

7.
The aim of this work was to assess the influence of wheat bran addition on the rheological properties of dough and on subsequent wheat bread volume and texture. Two types of bioprocessed bran (fermentation with yeast or with yeast plus enzymes) were studied in breadmaking at a substitution level of 20% (sufficient to deliver 6 g of dietary fiber per 100 g of product, the minimum for the European Food Safety Authority high‐fiber nutrition claim). Fermentation activated endogenous enzymes of bran, which together with exogenous enzymes modified the state of fiber in bran, resulting in solubilization of arabinoxylans and slight degradation of the insoluble fiber. Fermentation and enzyme treatment of bran compensated for the increased hardness (+100%) and the volume‐decreasing (–21%) effect observed with untreated bran. Analysis with partial least squares regression suggested the efficacy of bioprocessing to be based on solubilization of arabinoxylans, smaller particle size of bran, lower pasting viscosity of starch, improved resistance to extension, and accelerated CO2 production.  相似文献   

8.
The effects of ferulic acid and transglutaminase (TG) on the properties of wheat flour dough and bread were investigated. Ferulic acid and TG were blended with hard wheat flour at levels of 250 and 2,000 ppm of flour weight, respectively. The addition of ferulic acid reduced the mixing time and mixing tolerance. The addition of TG did not obviously affect the mixing properties. Significant effects of ferulic acid plus TG on the rested dough texture were observed for overmixed dough. The maximum resistance (Rmax) of the dough was significantly reduced with the addition of ferulic acid but increased with the addition of TG. The addition of TG with ferulic acid restored the Rmax reduced by ferulic acid alone. The proportion of SDS‐soluble high molecular weight proteins in the dough increased with the addition of ferulic acid and decreased with TG, when assessed with size‐exclusion HPLC fractionation. Although the addition of TG improved the handling properties of the dough made sticky with added ferulic acid, it did not improve the quality of the bread with added ferulic acid as measured by loaf volume and firmness.  相似文献   

9.
The effect of proteolytic enzymes, associated with Fusarium head blight, on wheat storage proteins and dough functionality was studied. Fusarium damaged kernels (FDK) and sound kernels were hand-picked from F. graminearum Schwabe and F. avenaceum (Fr.) Sacc. infected samples of bread and durum wheat. Scanning electron microscopy revealed significant degradation of endosperm protein in FDK. Storage proteins from FDK and sound kernels were analyzed by SDS-PAGE, RP-HPLC, and SE-HPLC. Total storage protein was lower in FDK but no significant qualitative differences in protein were detected by either RP-HPLC or SDS-PAGE. SE-HPLC was used to follow the hydrolysis of wheat storage protein by proteolytic enzymes found in FDK and a pure culture of F. graminearum. Selective inhibition of proteolytic activity by p-chloromercuribenzoate, and not soybean trypsin inhibitor or iodoacetic acid, suggests that the F. graminearum protease is an alkaline protease. Farinograph and extensigraph curves showed that the presence of FDK decreased dough consistency and resistance to extension. The presence of FDK in flour resulted in a substantial reduction in loaf volume. The loss of dough functionality and loaf volume potential was attributed to the presence of fungal proteases.  相似文献   

10.
Flours from advanced lines or cultivars of six triticales and two prime hard wheats, along with triticale‐wheat blends, were investigated for mixing, extension (excluding blends), and baking properties using microscale testing. Percentage total polymeric protein (PPP) and percentage unextractable polymeric protein (UPP) of flours and doughs, including blends, mixed to optimal dough development were estimated using size‐exclusion HPLC to determine the changes in protein solubility and association with blend composition (BC), mixing properties, and loaf height. Each triticale was blended with flours of each of the two wheat cultivars (Hartog and Sunco) at 0, 30, 40, 50, 60, 70, and 100% of wheat flour. Nonlinear relationships between BC and mixograph parameters (mixing time [MT], bandwidth at peak resistance [BWPR], and resistance breakdown [RBD]) were observed. A linear relationship between BC and peak resistance (PR) was predominant. PPP of triticale flours was mostly higher than PPP of wheat cultivars. UPP of all triticales was significantly lower than wheat cultivars. PPP of freeze‐dried doughs was mostly nonsignificant across the blends and showed a curvilinear relationship with BC. The deviations from linearity of MT and PPP were higher in triticale‐Sunco blends than in triticale‐Hartog blends. UPP of blends was closer to or lower than the lower component in the blend. The deviations from linearity for MT and UPP were greater in triticale‐Hartog blends than triticale‐Sunco blends. A highly significant correlation (P < 0.001) was observed between BWPR and loaf height. This suggested that BWPR in triticale‐wheat flour blends could be successfully used for the prediction of loaf height. Triticale flour could be substituted for wheat flour up to 50% in the blend without drastically affecting bread quality. Dough properties of triticale‐wheat flour blends were highly cultivar specific and dependent on blend composition. This strongly suggested that any flour blend must be tested at the desired blend composition.  相似文献   

11.
Polyols could prolong shelf life and improve the quality of white bread. But the effect of high contents of polyols on dough properties and bread qualities is not yet clearly known. Thus, the properties of dough and white bread with different addition of polyols were evaluated by means of selected physicochemical properties. Rheology experiment results showed that both glycerol and sorbitol decreased the G′ and G″ of the dough. The results of thermogravimetric analysis revealed that polyols hindered the evaporation of water and that glycerol had a greater capacity for water retention than did sorbitol. In the bread, they caused more water to be absorbed on the surface of the gluten–starch system. They decreased the water activity and mass loss of the bread, but the specific volume of the bread also decreased. We found when glycerol and sorbitol addition was higher than 8%, it could slightly increase the viscidity of dough, enhance the moisture content of bread, and reduce the water activity of bread. But the gluten strength of dough decreased, and shaping and proofing of dough were difficult, which resulted in the deterioration the quality of white bread. We conclude that the addition of glycerol or sorbitol below 8% would be beneficial to the properties of dough and white bread and that sorbitol is a better option than glycerol.  相似文献   

12.
Investigations were made to test the effect of two different sourdough starter culture types on wheat dough and bread quality. Two single‐strain starter cultures consisting of well‐defined strains of lactic acid bacteria (Lactobacillus plantarum, L. brevis) and a traditional mixed‐strain sourdough culture (containing L. crispatus, L. pontis, and Saccharomyces cerevisiae) were evaluated for their effects on the rheological characteristics of wheat dough using both fundamental rheological and standard baking tests. Two other doughs were also evaluated, one which was chemically acidified to a comparable pH value by the addition of lactic acid, and a control which was not acidified. Dynamic oscillation tests were performed using a controlled stress rheometer. The phase angle and the absolute value of the complex dynamic modulus were measured for all doughs at frequencies of 0.1–10 Hz. The addition of sourdough prepared using single‐strain or mixed‐strain cultures significantly increased the phase angle and reduced the complex modulus of the doughs at all frequencies (P < 0.05). Significant differences were found between the dough which was chemically acidified and those doughs which were biologically acidified. The addition of sourdough effected an increase in loaf specific volume relative to both the chemically acidified and the nonacidified doughs.  相似文献   

13.
Phytochemical profile (phenolic acids, carotenoids, and tocopherols) and antiproliferative properties of bread processing fractions, including the dough, crumb, and upper crust made from refined wheat and whole wheat flours were analyzed for two wheat cultivars. Ferulic acid, lutein, and α‐tocopherol were the predominant phenolic acid, carotenoid, and tocopherol, respectively, extracted from all fractions. The levels of all phytochemicals in whole wheat samples were over eightfold higher than their corresponding refined wheat samples. The concentrations of total phenolic acids (soluble and insoluble bound) were higher in the upper crust of refined (∼60–90%) and whole wheat (∼15–40%) breads than their corresponding dough fractions. However, the dough of whole wheat had higher levels of tocopherols and carotenoids compared with the crumb and upper crust, suggesting that phenolic acids were relatively stable during baking, whereas tocopherols (∼25–80%) and carotenoids (∼20–80%), were partially degraded. The antiproliferative activity of whole wheat bread extracts against HT‐29 cancer cells was weakly correlated with total phenolic acids but showed no correlations with total carotenoid and total tocopherol contents.  相似文献   

14.
Nitrogen (N) and sulfur (S) supplies have a strong influence on the quality and quantity of wheat storage proteins, which play an important role in the breadmaking process. Nitrogen derived from urea, S from micronized elemental sulfur, and a mixture of both (N+S) were applied at anthesis stage on wheat by foliar spray. To relate N and S incorporation in storage proteins to the quality of dough, their incorporation into each storage protein fraction was measured: monomers, low molecular weight glutenin subunits (LMW‐GS), and high molecular weight glutenin subunits (HMW‐GS). Then protein fraction quantities, molecular weight distribution (MWD), polymerization index (PI), and molecular dimensions of unextractable polymeric protein (UPP), as well as dough mixing properties were determined. Fertilizers N and S were differentially incorporated into each storage protein fraction, influencing protein synthesis. Moreover, after the N+S fertilization, the increase of the polymeric proteins induced an increase in molecular weight and compactness, as well as in dough strength and consistency. These results provide evidence that N and S fertilizers applied by foliar spray route at anthesis, simultaneously, play an important role in controlling the storage protein synthesis and the degree of polymerization, which in turn influence dough mixing properties.  相似文献   

15.
Thermostable ice structuring proteins (TSISPs) extracted from Chinese privet (Ligustrum vulgare) leaves were used in frozen dough. TSISPs extract thermal hysteresis activity ranged from 0 to 0.27°C based on different ice fractions in solution. The effects of the TSISPs extract on melting enthalpy of ice (ΔH), water molecular state, microstructure, rheofermentation capacity, and baking properties of doughs during frozen storage were investigated by differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy, rheofermentometer, and texture analyzer. The addition of TSISPs in frozen dough caused a decrease in freedom of water molecules and ΔH, which resulted in improved microstructure, fermentation capacity, and baking properties of frozen doughs. Residual gluten fibril increased, exposed starch granules decreased, and gas production and retention of frozen doughs was enhanced. These effects resulted in an increase in specific volume and a decrease in crumb hardness of baked frozen dough.  相似文献   

16.
Pyranose oxidase (P2O) improves wheat flour dough stability and bread quality. We related its effect on dough spread behavior to that on dough and bread crumb structure. Increasing P2O addition levels gradually reduced dough flow. High P2O addition levels further increased dough strength, significantly increased dough cell wall thickness, and decreased bread loaf volume. Taken together, affecting dough spread behavior impacts dough and bread (crumb) structure, and dough structure largely determines bread crumb structure.  相似文献   

17.
A reducing solution of 2-mercaptoethanol and its oxidized form 2-hydroxyethyl disulfide, whose variable concentrations set variable disulfide reduction potentials, was applied to progressively reduce the disulfide bonds of proteins extracted from doughs made from Meneba and Robin Hood flour. Several dough proteins had disulfide bonds stronger than those of other dough proteins. A SDS-sedimentation method was applied to monitor the baking of dough into bread. Dough proteins susceptible to heat (baking) were studied by SDS-fractionation, extraction with reducing alcoholic solution, SDS-PAGE, and N-terminal protein sequencing. High or low molecular weight glutenins, α, β, and γ-gliadins, α-amylase inhibitor, and α-amylase trypsin inhibitor were identified among the dough proteins modified by heat (as shown by reduced solubility in aqueous-SDS solution). The heat-induced modification of the gliadins and glutenins might contribute to the coagulation of dough proteins, while the heat-induced modification of the amylase or trypsin inhibitors might contribute to the regulation of endogenous or exogenous amylolytic or proteolytic activities in dough or bread.  相似文献   

18.
L-Ascorbic acid (AsA) and its related compounds play an important role as improvers in bread production. Addition of AsA and its related compounds, such as dehydro-L-AsA (DHA) and 2,3-diketo-L-gulonic acid (DKG), affected the rheological properties of flour-water dough during mixing, especially hardness. Addition of 10 or 100 ppm AsA increased the dough hardness of samples as compared with the control dough. Addition of DHA or DKG to dough only slightly increased hardness. Addition of p-quinone significantly increased the hardness. Both glutathione (GSH) and its oxidized form (GSSG) drastically decreased the hardness. Contents of AsA in the treated dough decreased and contents of DHA increased during mixing, suggesting that oxidation occurred. The oxidation rate of AsA was influenced by the concentration of AsA added. The improving effect of AsA on the rheological properties of flour-water dough seemed to be mostly dependent on reactive intermediate oxidation products such as O2-, while the contribution of DHA was rather limited.  相似文献   

19.
The network‐forming attributes of gluten have been investigated for decades, but no study has comprehensively addressed the differences in gluten network evolution between strong and weak wheat types (hard and soft wheat). This study monitored changes in SDS protein extractability, SDS‐accessible thiols, protein surface hydrophobicity, molecular weight distribution, and secondary structural features of proteins during mixing to bring out the molecular determinants of protein network formation in hard and soft wheat dough. Soft wheat flour and dough exhibited greater protein extractability and more accessible thiols than hard wheat flour and dough. The addition of the thiol‐blocking agent N‐ethylmaleimide (NEM) resulted in similar results for protein extractability and accessible thiols in hard and soft wheat samples. Soft wheat dough had greater protein surface hydrophobicity than hard wheat and exhibited a larger decrease in surface hydrophobicity in the presence of NEM. Formation of high‐molecular‐weight (HMW) protein in soft wheat dough was primarily because of formation of disulfides among low‐molecular‐weight (LMW) proteins, as indicated by the absence of changes in protein distribution when NEM was present, whereas in hard wheat dough the LMW fraction formed disulfide interaction with the HMW fraction. Fourier transform infrared spectroscopy indicated formation of β‐sheets in dough from either wheat type at peak mixing torque. Formation of β‐sheets in soft wheat dough appears to be driven by hydrophobic interactions, whereas disulfide linkages stabilize secondary structure elements in hard wheat dough.  相似文献   

20.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号