首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Prime starch was extracted from soft and hard wheat flours and ballmilled to produce 100% damaged starch. Small amounts of the ball-milled starch or a pregelatinized starch were added to sugar-snap cookie formulations. Other cookie doughs were produced from prime starch only (no flour) with small amounts of the ball-milled starch added. Starch damages of the resulting substituted soft and hard wheat flours and soft and hard wheat prime starches were determined and compared to diameters of sugarsnap cookies produced from the control and treatments. Soft wheat flour and starches produced larger diameter cookies than their hard wheat counterpart at all levels of damaged starch. Both sources of damaged starch (ball-milled or pregelatinized starch) had similar effects on cookie diameter. Cookies produced from all starch (no flour) were similar to their respective flour controls at ≈8% damaged starch. To produce the same size cookie as that produced by soft wheat flour and starch, hard wheat flour and starch cookie formulations required less damaged starch and had lower alkaline water retention than did the soft wheat flour and starch cookie formulations. Other flours were treated with chlorine gas to pH 4.8. Pregelatinized starch (≈5%) was required to reduce the cookie diameter as much as chlorine treatment did. Results suggest unique quality differences between soft and hard wheat starch as they function in sugar-snap cookie baking. The functional results of those differences are not adequately quantified by the estimation of damaged starch level.  相似文献   

2.
Cookie diameter is a function of spread rate and set time during baking. Dough viscosity appears to control cookie spread rate and, thus, will affect final cookie diameter. The technique of lubricated uniaxial compression was used to measure the elongational viscosity of cookie dough. Full-formula cookie doughs made with a commercial hard wheat flour had a significantly higher elongational viscosity (5.88 × 106 ± 9.17 × 104 Pa·S) than cookie doughs made with a commercial soft wheat flour (2.17 × 106 ± 1.05 × 104 Pa·S). Elongational viscosity correlated significantly (P < 0.05) with the diameter (r = -0.796) of cookies made with flours from various soft wheat cultivars. Using a simplified cookie formula decreased the testing time without greatly changing the correlation coefficient (r = -0.738). Thus, lubricated uniaxial compression appears to be an appropriate technique to measure the viscosity of cookie doughs and may be useful for predicting the cookie baking quality of soft wheat flours.  相似文献   

3.
Sugar-snap cookie doughs prepared with a commercial soft wheat flour and standard formula water (25%, fwb) produced baked cookies with a mean diameter of 186 mm. Increasing the formula water to 30% resulted in cookies with a mean diameter of 187 mm and decreasing the formula water to 20% resulted in cookies with a mean diameter of 185 mm. A similar effect was seen when the formula water in cookie doughs prepared with the pure hard red spring cultivar Butte 86 or the pure soft white winter club cultivar Paha was varied. Thus, varying the formula water in cookie dough appeared to have little or no effect on final cookie diameter. Formula water content, however, did affect cookie dough spread rate and set time during baking. Increasing the formula water caused the spread rate to increase but shortened the set time. As a result, final cookie diameter was essentially unchanged.  相似文献   

4.
Cookies were produced from different sorghum flours to determine their potential as vectors of antioxidants. Different sorghum cultivars and their flour extraction rates were evaluated for their effects on phenolic content and antioxidant activity of the cookies. Consumer acceptance of the sorghum cookies was compared with that of wheat flour cookies. For each sorghum cultivar, cookies of 100% extraction rate flours had two to three times more total phenolics compared with those of 70% extraction rate flours, while antioxidant activity was 22–90% higher. Cookies of the condensed tannin sorghum had two to five times more phenolics compared with those of condensed tannin‐free sorghum. Antioxidant activity was 145–227 μMol Trolox equivalents (TE)/g in cookies of condensed tannin sorghum compared with 10–102 μMol TE/g in those of condensed tannin‐free sorghum. The sorghum flours had slightly higher phenolic content and antioxidant activity values than their corresponding cookies. Cookies of the red tannin‐free sorghum flours (PAN 8564/8446) were equally liked as wheat flour cookies, except for texture. However, cookies of condensed tannin sorghum were least accepted compared with wheat flour cookies despite their high antioxidant activity.  相似文献   

5.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

6.
Whole grain wheat products are a growing portion of the foods marketed in North America, yet few standard methods exist to evaluate whole grain wheat flour. This study evaluated two flour milling systems to produce whole grain soft wheat flour for a wire‐cut cookie, a standard soft wheat product. A short‐flow experimental milling system combined with bran grinding in a Quadro Comil produced a whole grain soft wheat flour that made larger diameter wire‐cut cookies than whole grain flour from a long‐flow experimental milling system. Average cookie diameter of samples milled on the short‐flow mill was greater than samples milled on the long‐flow system by 1 cm/two cookies (standard error 0.09 cm). The long‐flow milling system resulted in more starch damage in the flour milling than did the short‐flow system. The short‐flow milling system produced flours that were useful for discriminating among wheat cultivars and is an accessible tool for evaluating whole grain soft wheat quality.  相似文献   

7.
We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy, and waxy endosperm, as well as hard wheat, were tested for amylose content, pasting properties, and SC baking quality. Starches isolated from wheat flours of normal, single‐null partial waxy, double‐null partial waxy, and waxy endosperm were also tested for pasting properties and baked into SC. Double‐null partial waxy and waxy wheat flours produced SC with volume of 828–895 mL, whereas volume of SC baked from normal and single‐null partial waxy wheat flours ranged from 1,093 to 1,335 mL. The amylose content of soft white and club wheat flour was positively related to the volume of SC (r = 0.790, P < 0.001). Pasting temperature, peak viscosity, final viscosity, breakdown, and setback also showed significant relationships with SC volume. Normal and waxy starch blends having amylose contents of 25, 20, 15, and 10% produced SCs with volume of 1,570, 1,435, 1,385, and 1,185 mL, respectively. At least 70 g of starch or at least 75% starch in 100 g of starch–gluten blend in replacement of 100 g of wheat flour in the SC baking formula was needed to produce SC having the maximum volume potential. Starch properties including amylose content and pasting properties as well as proportion of starch evidently play significant roles in SC baking quality of wheat flour.  相似文献   

8.
A modified AACC 45‐g flour cookie procedure using asymmetrical centrifuge mixing as a replacement for conventional mixing has been developed. Ingredients are added to a pin cup in the same proportion as in the Approved Method 10‐50D (AACC 2000) sugar‐snap cookie test and mixed in a single step for 15 sec at 2,500 rpm. The dough is then processed and the resulting cookies are scored according to the AACC Approved Method 10–52 40‐g flour micro cookie test method. Cookies produced from a control cookie flour and four commercial soft wheat flours with the new mixing method did not show the characteristic surface cracking patterns normally obtained with conventional three‐stage mixing. However, with the exception of one spread value, no significant differences in spread, thickness, or the ratio of spread to thickness were evident when results were compared with those obtained with the AACC Approved Method 10‐50D 225‐g flour test method using a Hobart mixer equipped with a paddle. Cookies produced from two sets of advanced soft white spring wheat breeder lines, including control cultivars, using the asymmetrical centrifuge mixing procedure were also very comparable in spread, thickness, and ratio compared with those produced using 225 g of flour in the AACC Approved Method. Reproducibility of test results for all cookie parameters for both commercial and advanced plant breeder samples were comparable to the AACC Approved Method 10‐50D 225‐g flour test method. The very short mixing time and the ability to quickly clean or use multiple pin cups should allow very high throughput of flour samples relative to the use of conventional mixers for cookie testing.  相似文献   

9.
The separation efficiency of wheat flour particles based on size, with minimum bran contamination, is important for a flour mill. Separation of flour during fractionation depends on the surface characteristics and shape of flour particles. Wheat flour particle characteristics such as surface lipid content, roughness, and morphology with respect to particle size were studied to better understand the differences between hard and soft wheat flours. Fractal analysis using image analysis was used to ascertain surface roughness. That was in turn verified by atomic force microscopy measurements. Soft wheat flours (soft red winter and soft white) had a higher degree of surface roughness than the hard wheat flours (hard red spring, hard red winter, and hard white). The fractal dimension values ranged from 2.67 to 2.78 and from 2.28 to 2.55 for soft and hard wheat flours, respectively. The surface lipid content increased with particle size in hard wheat but decreased in soft wheat flours. The surface lipid levels ranged from 1.02 to 1.18 and from 2.55 to 2.58% (% of total area) for 45 μm particles in hard wheat flours (hard red spring, hard red winter, and hard white) and soft wheat flours (soft red winter and soft white), respectively. For the 90 μm particles the lipid levels ranged from 1.54 to 1.62 and from 1.70 to 1.83% (% of total area) for flour particles in hard wheat flours (hard red spring, hard red winter, and hard white) and soft wheat flours (soft red winter and soft white), respectively. Surface lipid content and roughness values showed that soft wheat flours will be more cohesive than hard wheat flours. The morphology values revealed the irregularity in flour particles, irrespective of wheat class and particle size, owing to nonuniform fragmentation of protein and starch matrix of the wheat endosperm.  相似文献   

10.
Physicochemical properties of 34 wheat flours with various classes and different protein contents were related to optimum water absorption of noodle dough. Club and soft wheat flours generally exhibited higher water absorption (34–37%) of noodle dough than hard wheat flours (31–35%). Optimum water absorption of noodle dough in three hard wheat flours with five different protein contents was 33–37%. Optimum water absorption was negatively correlated with flour protein content and SDS sedimentation volume. Physical properties of flour, damaged starch content, NIRS hardness and water retention capacity, influenced optimum water absorption of noodle dough from club, soft and hard wheat flours. A prediction equation developed using protein content, water retention capacity and SDS sedimentation volume of flour provides a reliable estimation of the optimum absorption of noodle dough for making noodles.  相似文献   

11.
《Cereal Chemistry》2017,94(3):400-408
The chemical composition, functional properties, starch digestibility, and cookie‐baking performance of bean powders from 25 edible dry bean varieties grown in Michigan were evaluated. The beans were ground into coarse (particle size ≤1.0 mm) or fine (≤0.5 mm) powders. Starch and protein contents of the bean powders varied between 34.4 and 44.5% and between 19.1 and 26.6% (dry basis [db]), respectively. Thermal properties, pasting properties, and water‐holding and oil‐binding capacities of the bean powders differed and were affected by particle size. After blending the bean powders with corn starch (bean/starch = 7:3, db), the blends were used for cookie baking following a standard method ( 1 Approved Method 10‐54.01). Generally, the cookies baked from the fine bean powders had smaller diameters, greater thicknesses, and greater hardness values than those from the coarse counterparts. Differences in the cookie‐baking performances of the bean powders were observed among the 25 varieties. Larger proportions of resistant starch (RS) were retained in the bean‐based cookies (54.7–126.7%) than in the wheat‐flour‐based cookies (10.4–19.7%) after baking. With higher contents of RS and protein, the bean‐based cookies had more desirable nutritional profiles than those baked from wheat flour alone.  相似文献   

12.
The highly variable environmental conditions across the Pacific Northwest (PNW) influence the milling and baking quality of wheat grain produced in this region. This study was conducted to compare the flour composition, dough rheology, and baking quality of soft and hard spring wheat grain produced in diverse environments. Thirteen soft and five hard spring wheat cultivars were grown at Lind, WA (semiarid) and Fairfield, WA (high precipitation) for three years. Grain was evaluated for flour composition, rheology, and experimental baked product quality. Flour composition, rheological properties, and baking qualities were primarily influenced by the environment. Protein contents, microSDS values, and water absorption levels were significantly (P < 0.0001) higher for all cultivars grown at Lind compared with those from Fairfield. Cookie diameters were larger (P < 0.0001) for soft flours from Fairfield, whereas loaf volumes were higher (P < 0.0001) for hard wheat flours from Lind. Results indicate that producing soft or hard wheat outside of its optimal climatic zone reduces experimental baked product quality.  相似文献   

13.
Forty grain samples, derived from six soft red winter wheat lines with 1BL/1RS and four genotypes without the translocation, grown in four diverse environments, were used to assess test weight, flour yield, protein content of grain and flour, rheological properties, and end-use characteristics in cakes and cookies. Wheat lines with 1BL/1RS had similar or higher mean test weights than lines without the translocation. Mean flour yields were similar for the two groups. Test weight was not predictive of flour yield. Mean values for grain moisture, grain protein, and rheological properties, as measured by farinograph for mixing time stability and mixing tolerance index, were similar for wheat lines with and without 1BL/1RS. In several cases, flour from lines with 1BL/1RS produced dough with greater mixing tolerance and cakes with higher volume and softer texture than did check lines without the translocation. However, the translocation in these soft red winter wheat lines resulted in higher farinograph water absorption by the flour and decreased cookie spread. The results of this study were novel in that end-use, specifically baking quality of soft wheat lines with 1BL/1RS, varied dramatically depending on whether cookies or cakes were evaluated. Therefore, use of single-product baking tests may lead to false conclusions regarding end-use quality of 1BL/1RS soft wheat. Direct comparison between a pair of sister lines with and without 1BL/1RS indicated that the translocation had adverse effects on quality as exemplified by lower flour yield, greater farinograph water absorption, and reduced cookie diameter. However, the 1BL/1RS line had greater mixing tolerance and similar cake volume and texture scores in comparison to its sister line. In summary, 1BL/1RS lines were identified in which quality characteristics exceeded those of control cultivars and commercial flours. Genetic background and environmental factors probably affected milling and baking quality to a greater extent than the translocation. Many of the negative quality attributes previously associated with 1BL/1RS are probably due to genetic background effects and, therefore, could be greatly diminished with improvement of the genetic background in which the translocation resides.  相似文献   

14.
The properties of frozen and unfrozen water in two different wheat flours (hard and soft), and in their main components (gluten, starch, damaged starch, water‐soluble and water‐insoluble pentosans), were described using modulated differential scanning calorimetry (DSC). As a reference, enthalpy values of crystallization (298 J/g) and melting (335 J/g) of pure water were determined from the total heat flow curves. The separation of thermal events between the reversing and nonreversing heat flows with modulated DSC was not effective due to disturbances in the modulated temperature scan. For wheat flours and their components, linear regressions described well the changes in frozen water content calculated from enthalpies of freezing (R2 = 0.970–0.982) or melting (R2 = 0.783–0.996). The unfrozen water content (UFWC) calculated for the hard wheat flour (29–31%, db) was close to that calculated for the soft wheat flour (30–32%). The UFWC of wheat gluten (38–47%), starch (38–42%), damaged starch (37–40%), water‐soluble pentosans (51%), and water‐insoluble pentosans (40–44%) were higher than the corresponding values for the flours. The simple summation of the contributions of each component cannot be used to estimate the overall behavior of flours.  相似文献   

15.
Jet milling is a fluid energy impact‐milling technique generally used for the ultrafine reduction of higher value materials. The efficiency of jet milling combined with air classification appears very efficient to separate starch from other wheat flour aggregate components and to produce wheat starch with very low residual protein content. Indeed, residual protein content of the starch‐rich fraction can be reduced to <2% db with a series of successive grinding and air classification operations. Lipid and pentosan contents were also reduced in the starch‐rich fraction. Nevertheless, jet milling cannot eliminate grinding differences observed between different types of wheat. Wheat hardness continues to have an effect on milling and classification yields and on the composition of air classification fractions. To obtain starch‐rich fraction with only 2% protein content, hard wheat flour required a series of at least five grinding steps, whereas only three steps are necessary for soft wheat flour. Under these conditions, hard wheat flours give 24% mass yield with 12% starch damage compared with 39% yield and a low starch damage content (6.4%) for soft wheat flour. These results highlight new prospects for the development of cereal flours, especially soft wheat flours.  相似文献   

16.
Wheat flour tortillas were made from flour streams of three wheat cultivars: Jagger hard red winter wheat, 4AT-9900 hard white winter wheat, and Ernie soft red winter wheat. Wheat samples were milled on a Miag experimental mill. Twelve flour streams and one straight-grade flour were obtained. Tortillas were made from each flour stream and the straightgrade flour by the hot-press method. Tortilla stretchability and foldability were evaluated by a texture analyzer and six panelists, respectively. Flour protein and water absorption affected tortilla texture. The foldability evaluated by panelists was positively correlated with flour protein content, farinograph water absorption, and damaged starch (P < 0.05). The 2BK and 3BK streams of hard wheat produced tortillas with strong stretchability and good foldability. Middling streams of hard wheat yielded tortillas with lighter color and less stretchability. Under the conditions tested in this study, soft wheat flours were not good for producing flour tortillas.  相似文献   

17.
Chlorine treatment of soft wheat flour improves cake volume and produces a stiffer, more resilient crumb. Four pairs of chlorine‐treated and untreated flours were obtained. A selected portion of the area under the Rapid Visco Analyser hot pasting flour viscosity curve was used to determine how much starch could be used with a nonchlorine‐treated flour so that the area is equivalent to that produced by a chlorine‐treated cake flour with no added starch. Replacement of nonchlorine‐treated flour with up to 43% starch produced areas under the pasting curve that were equivalent to those produced by chlorine‐treated flours. Increased concentration of dried egg albumen plus added soya lecithin and xanthan gum were included in the formulation containing starch and nonchlorine treated flour to produce a new basic ingredient set. The basic ingredient set was evaluated for its influence on cake geometry, crumb structure, and crumb texture response to compression (hardness and spring‐back rate). High‐ratio white layer cakes using the new basic ingredient set produced similar or better cake quality characteristics than those produced using control chlorine‐treated flours. The same new basic ingredient set was used to produce pound cakes, cupcakes, and sheet cakes using nonchlorinated flours. The geometry and objective texture of those cakes also were equivalent to respective cakes produced with chlorine‐treated flour. The basic ingredient set does not require any special flour treatment.  相似文献   

18.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

19.
Wheat starches were isolated from three wheat flours. Two vital wheat glutens, one from a commercial source and another one isolated from straight-grade flour, were combined with wheat starches to form reconstituted flours with a protein level of 10%. Several characteristics of tortillas made with the hot-press method were measured. No significant difference (P < 0.05) occurred in texture of tortillas made with hard wheat gluten and soft wheat gluten. Wheat starches did not have any significant (P < 0.05) effect on tortilla stretchability or foldability. Analysis of variance confirmed that wheat starch and gluten had limited effects on tortilla texture. The possible reasons were that the solubles of wheat flour were not included, and the shortening in the tortilla formula interfered with the interaction of gluten and starch.  相似文献   

20.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号