首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of 5-hydroxytryptamine (5-HT) into platelets is an important mechanism by which low plasma concentrations are maintained, and platelet activation may therefore result in significant release of this vasoconstrictor. The present study examined the kinetics of active uptake of radiolabelled [3H]5-HT by washed equine platelets in vitro, and investigated the effects on this process of 4 other naturally occurring monoamines which may be released from the caecum in conditions of carbohydrate overload. The release of [3H]5-HT by platelets was also studied, since platelet accumulation and activation has been associated with acute laminitis. Release of [3H]5-HT was measured in response to platelet activating factor (PAF), unlabelled 5-HT and the indirect activation of platelets by endotoxin in the presence of blood leucocytes. Km value for the uptake of 5-HT by equine platelets was 2.4 +/- 0.6 micromol/l and the Vmax was 8.3 +/- 0.6 pmol [3H]5-HT/10(7) platelets/min. The rate of uptake of 5 micromol/l [3H]5-HT was significantly decreased by the uptake inhibitors fluvoxamine and clomipramine. The 4 other monoamines examined all inhibited the uptake of [3H]5-HT in a noncompetitive manner, decreasing Vmax by between 17 and 82%. Incubation of platelets with LPS (0.1 mg/ml) in the absence of leucocytes did not result in significant release of [3H]5-HT; however, in the presence of leucocytes 3.8 +/- 1.7 pmol [3H]5-HT/10(7) platelets (mean +/- s.e.) were released. This release was significantly inhibited by parthenolide and WEB2086, but not by aspirin. This suggests that PAF from activated leucocytes was responsible for the 5-HT release. These data show that 5-HT uptake by equine platelets is a saturable process operating most efficiently at substrate concentrations in the low micromolar range. The noncompetitive inhibition of 5-HT uptake by other naturally occurring monoamines may result in increased plasma concentrations of 5-HT, as would its release by endotoxin. Such a rise in plasma 5-HT concentrations may contribute to selective vasoconstriction in the equine digital circulation.  相似文献   

2.
OBJECTIVE: To determine in vitro vasoactive potency of monoamines formed in the cecum and found in the systemic circulation of horses. SAMPLE POPULATION: Segments of digital blood vessels obtained from 6 healthy mixed-breed horses and ponies euthanatized at an abattoir and platelets isolated from 4 healthy ponies. PROCEDURE: Paired rings of digital artery and vein from the same horse were examined, and isometric tension was recorded. Concentration-response curves for tryptamine (TRP), tyramine (TYR), phenylethylamine (PEA), isoamylamine (IAA), and isobutylamine (IBA) were obtained. Vasoconstrictor mechanisms were investigated for TRP and TYR by the use of antagonists. Washed platelets loaded with [3H]-5-hydroxytryptamine (5-HT) were incubated with monoamines; the amount of radioactivity displaced after 30 minutes was estimated. RESULTS: TRP, TYR, and PEA were potent constrictors of arteries and veins, with TRP and TYR being more potent in veins than arteries. Constrictions induced by TYR were inhibited by benextramine (alpha-antagonist) and nisoxetine (neuronal-uptake blocker), whereas TRP responses were inhibited by ketanserin (5-HT receptor antagonist). All 5 amines displaced 5-HT from platelets with the order of potency being TYR > TRP > PEA > IAA > IBA. CONCLUSIONS AND CLINICAL RELEVANCE: Amines from the equine cecum cause digital vasoconstriction. The most potent (TRP and TYR) cause selective venoconstriction. Tyrosine activates predominantly alpha-adrenoceptors through the release of neuronal norepinephrine, whereas TRP activates 5-HT receptors. All amines tested released 5-HT from platelets. Amines formed in the cecum and released into the systemic circulation warrant additional investigation as trigger factors for digital ischemia and subsequent laminitis.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Disturbances of digital blood flow are thought to be fundamental to the pathophysiology of acute laminitis. However, factors linking the initiating events in the equine hindgut with these disturbances in the foot remain to be determined. HYPOTHESIS: Amine compounds, formed by bacteria in the equine hindgut, have digital vasoconstrictor effects in vivo. METHODS: Tryptamine (1.6 microg/kg/min) and phenylethylamine (2.13 microg/kg/min) were infused i.v. into standing nonsedated horses. Digital blood flow was measured by Doppler ultrasound and foot surface temperature was monitored. Plasma 5-hydroxytryptamine (5-HT) concentrations were measured by HPLC. RESULTS: Tryptamine and phenylethylamine infusions had no effect on systemic arterial blood pressure or heart rate, but caused significant decreases in digital arterial blood flow (mean +/- s.e. 29.2 +/- 8.5 and 18.4 +/- 6.8%, respectively). Both amines also caused decreases in dorsal hoof wall temperature (0.6 +/- 0.1 and 0.5 +/- 0.1 degrees C for tryptamine and phenylethylamine, respectively) and concomitant increases in plasma 5-HT concentration. CONCLUSIONS: Tryptamine and phenylethylamine caused reduction of digital blood flow, effects which may have been mediated, in part, via displacement of 5-HT from platelets. POTENTIAL RELEVANCE: Amine compounds occurring in the equine hindgut, if released into the circulation following carbohydrate overload, could contribute to selective digital vasoconstriction. Further work in ponies and horses, with naturally occurring laminitis, is necessary to determine whether amines represent a therapeutic target in this disease.  相似文献   

4.
Haemodynamic disturbances leading to ischaemia and reperfusion injury of the digit are thought to be involved in the pathophysiology of acute equine laminitis. Identification of physiological regulators of blood flow through the equine digit is important in identifying factors, which may predispose animals to laminitis. A method was developed to assess endothelium-dependent responses of the isolated Krebs-perfused equine digit by co-administration of 5-hydroxytryptamine (5-HT) with vasodilator agents, carbachol (CCh), bradykinin (BK) and substance P (SP). Bolus co-administration of CCh (0.02-2 micromol), BK and SP (0.02-0.2 nmol), caused inhibition of the 5-HT pressor response by 50-60%. The vasodilator responses were abolished by the detergent, CHAPS, indicating endothelium dependency; whereas vasoconstrictor responses to 5-HT were potentiated. CCh-induced relaxation was significantly reduced by the nitric oxide synthase inhibitor L-NAME (79.7 +/- 3.4% inhibition), whereas a large proportion of BK and SP-induced relaxation remained (34.1 +/- 6.3% and 33.6 +/- 5.3% inhibition). L-NAME potentiated vasoconstrictor responses to 5-HT. In conclusion, this study demonstrates that endothelium-derived NO modulates the response to vasoconstrictors such as 5-HT and is likely to be an important regulator of blood flow in the digital resistance vascular bed. Other factor(s) released by the endothelium are also important in regulating blood flow, whose identity remains to be established.  相似文献   

5.
OBJECTIVE: To determine the effect of endotoxin (lipopolysaccharide [LPS]) on vasoactive mediator production by cultured equine digital vein endothelial cells (EDVECs). SAMPLE POPULATION: EDVECs obtained from forelimb digital veins of 7 healthy adult horses. PROCEDURES: EDVECs were incubated with or without LPS (1 microg/mL) for 0, 2, 4, 6, 22, and 24 hours. The EDVECs were incubated for 18 hours with LPS (10 pg/mL to 1 microg/mL) with or without ibuprofen, cycloheximide, or L-nitroarginine methyl ester. Medium concentrations of prostacyclin, cyclic guanosine monophosphate, endothelin-1, and thromboxane A(2) were determined. Changes in inducible nitric oxide synthase and cyclooxygenase-2 expression were determined. RESULTS: LPS stimulated mean 4.2- and 14.1-fold increases in EDVEC prostacyclin and cyclic guanosine monophosphate production, respectively, after 22 hours. These effects were LPS concentration-dependent (LPS concentrations that induced a response halfway between the maximum response and baseline of 1.50 and 1.22 ng/mL, respectively). The LPS-induced cyclic guanosine monophosphate production was significantly inhibited (to basal concentrations) by L-nitroarginine methyl ester, and prostacyclin production was inhibited by cycloheximide and ibuprofen. Production of thromboxane A(2) by EDVECs was not detected. Endothelin-1 accumulated in the medium, but LPS did not enhance its production. Inducible nitric oxide synthase expression in EDVECs was not detected with the available antibodies, whereas LPS stimulated cyclooxygenase-2 expression in a time- and concentration-dependent manner. CONCLUSIONS AND CLINICAL RELEVANCE: LPS stimulated vasoactive mediator production by equine endothelial cells, which may play a role in LPS-induced digital hypoperfusion.  相似文献   

6.
Accumulation of equine eosinophils at sites of parasite infestation or allergic inflammation depends upon their adherence to vascular endothelial cells and subsequent migration through the endothelium and extracellular matrix. This study has examined whether cytokines, which cause endothelial cell-dependent eosinophil adherence in other species, and histamine and substance P, which increase adherence of equine eosinophils to protein coated plastic, induce equine eosinophil adherence to cultured equine digital vein endothelial cell (EDVEC) monolayers. The EDVEC monolayers were stimulated with recombinant human (rh) interleukin (IL)-1beta, rhTNFalpha, substance P or histamine for different times and with a range of concentrations of mediators and the adherence of blood eosinophils from normal horses examined. All four mediators caused time- and concentration-dependent increases in adherence. However, neither the response to substance P, nor that to histamine, reached a maximum at the highest concentration tested (10-3 M: 10.6 +/- 2.6% and 4.5 +/- 0.6% adherent cells vs. background adherence of 1.9 +/- 0.4% and 1.1 +/- 0.2%; values for substance P and histamine, respectively, expressed as a percentage of total cells added initially; n=4). These data suggest that, as in other species, cytokines induce endothelial cell-dependent eosinophil adherence and mediators released during allergic inflammation may play a role in eosinophil recruitment by this mechanism.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Elevated plasma homocysteine (HCy) concentration is a risk factor for cardiovascular diseases associated with endothelial dysfunction, including the human digital ischaemic disease, Raynaud's phenomenon. HYPOTHESIS: HCy causes dysfunction of equine vascular endothelium and elevated plasma concentrations predispose to laminitis. OBJECTIVES: To determine 1) the concentration of HCy in vitro, which inhibits equine vascular endothelial cell function and 2) any association between risk of laminitis and plasma HCy concentration. METHODS: Endothelial function was studied by measuring endothelium-dependent vasodilatory responses of the equine isolated perfused digit and basal nitric oxide (NO) production by cultured equine digital vein endothelial cells (EDVECs). Total plasma HCy (tHCy) concentrations were measured in samples collected in the winter and spring from normal ponies and ponies predisposed to laminitis. RESULTS: HCy (10 and 100 micromol/l) inhibited endothelial function and, at concentrations above 100 micromol/l, inhibited NO production by EDVECs. Plasma tHCy concentration ranged from 13 to 14.7 micromol/l. There was no effect of season or disease status on the concentration measured. CONCLUSIONS: In vitro, HCy was shown to interfere with endothelial cell function at physiologically relevant concentrations. No evidence was found for an association between risk of laminitis and high plasma concentrations of HCy. POTENTIAL RELEVANCE: Elevated plasma HCy concentrations could adversely affect endothelial cell function and mangement regimens that lead to increases in plasma HCy concentration should be avoided in ponies predisposed to laminitis.  相似文献   

8.
REASONS FOR PERFORMING STUDY: There is currently little published information about the effects of endothelin-1 (ET-1), a potent endogenous spasmogen of vascular and airway smooth muscle, on pulmonary vasculature and airways or which ET receptor subtypes mediate ET-1-induced vasoconstrictive and bronchoconstrictive action in the horse. OBJECTIVES: To investigate the effect of endothelin-1 (ET-1) on smooth muscle from isolated equine pulmonary artery and bronchus. In addition, the roles of ETA and ETB receptors in ET-1 mediated contraction in these tissues were assessed. METHODS: The force generation of ring segments from pulmonary arteries or third-generation airways (obtained from horses subjected to euthanasia for orthopaedic reasons) were studied in an organ bath at 37 degrees C in response to exogenous endothelin and selective endothelin A (BQ123) or B receptor (BQ788) antagonists. RESULTS: ET-1 produced concentration-dependent contractions of the equine pulmonary artery and bronchus. The threshold for contraction was 10(-10) and 10(-9) mol/l ET-1 for pulmonary artery and bronchus, respectively. The maximal contraction induced by the highest ET-1 concentration (10(-7) mol/l) was 173 and 194% of the contraction obtained with 100 mmol/l KCl in pulmonary artery and bronchus, respectively. ET-1 potency was 25 times greater in equine pulmonary artery than in equine bronchus (concentration of ET-1 producing 50% of maximal contraction [EC50] = 5.6 10(-9) mol/l and 2.2 10(-8) mol/l, respectively). In pulmonary artery, ET-1 induced contractions were significantly inhibited by the ETA receptor antagonist BQ123 (1 micromol/l; dose-response curve to ET-1 was shifted to the right by 5.4-fold), but not by the ETB antagonist BQ788. In bronchus, dose-responses curves to ET-1 were shifted to the right by BQ123 (1 micromol/l; 2.5-fold), but not by BQ788 (1 micromol/l). In the presence of both antagonists, the dose-response curve to ET-1 was shifted to the right by 4.5-fold. CONCLUSIONS: These functional studies demonstrate that ET-1 is a potent spasmogen of equine third generation pulmonary artery and bronchus, and that contractions are mediated via ETA receptors in the former and both ETA and ETB receptors in the latter. POTENTIAL CLINICAL RELEVANCE: Endothelin receptor antagonists may have potential for treating equine pulmonary hypertension or bronchoconstriction.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Ca2+ homeostasis in articular chondrocytes affects synthesis and degradation of the cartilage matrix, as well as other cellular functions, thereby contributing to joint integrity. Although it will be affected by mechanical loading, the sensitivity of intracellular Ca2+ concentration ([Ca2+]i) in equine articular chondrocytes to many stimuli remains unknown. HYPOTHESIS: An improved understanding of Ca2+ homeostasis in equine articular chondrocytes, and how it is altered during joint loading and pathology, will be important in understanding how joints respond to mechanical loads. METHODS: [Ca2+]i was determined using the fluorophore fura-2. We examined the effects of hypotonic shock, a perturbation experienced in vivo during mechanical loading cycles. We used inhibitors of Ca2+ transporters to ascertain the important factors in Ca2+ homeostasis. RESULTS: Under isotonic conditions, [Ca2+]i was 148 +/- 23 nmol/l, increasing by 216 +/- 66 nmol/l in response to reduction in extracellular osmolality of 50%. Resting [Ca2+]i, and the increase following hypotonic shock, were decreased by Ca2+ removal; they were both elevated when extracellular [Ca2+] ([Ca2+]o) was raised or following Na+ removal. The hypotonicity-induced rise in [Ca2+]i was inhibited by exposure of cells to gadolinium (Gd3+; 10 micromol/l), an inhibitor of mechanosensitive channels. [Ca2+]i was also elevated following treatment of cells with thapsigargin (10 micromol/l), an inhibitor of the Ca2+ pump of intracellular stores. CONCLUSIONS: A model is presented which interprets these findings in relation to Ca2+ homeostasis in equine articular chondrocytes, including the presence of mechanosensitive channels allowing Ca2+ entry, a Na+/Ca2+ exchanger for removal of intracellular Ca2+ and intracellular stores sensitive to thapsigargin. POTENTIAL RELEVANCE: A more complete understanding of Ca2+ homeostasis in equine chondrocytes may allow development of future therapeutic regimes to ameliorate joint disease.  相似文献   

10.
OBJECTIVE: To determine the presence of adenosine receptor subtypes A1 and A2a in equine forebrain tissues and to characterize the interactions of caffeine and its metabolites with adenosine receptors in the CNS of horses. SAMPLE POPULATION: Brain tissue specimens obtained during necropsy from 5 adult male research horses. PROCEDURE: Membrane-enriched homogenates from cerebral cortex and striatum were evaluated by radioligand binding assays with the A1-selective ligand [3H]DPCPX and the A2a-selective ligand [3H]ZM241385. Functional responses to adenosine receptor agonists and antagonists were determined by a nucleotide exchange assay using [35S]-guanosine 5'-(gamma-thio) triphosphate ([35S]GTPgammaS). RESULTS: Saturable high affinity [3H]DPCPX binding (A1) sites were detected in cerebral cortex and striatum, whereas high-affinity [3H]ZM241385 binding (A2a) sites were detected only in striatum. Caffeine and related methylxanthines had similar binding affinities at A1 and A2a sites with rank orders of drug binding affinities (theophylline > paraxanthine > or = caffeine > theobromine) similar to other species. [35S]GTPgammaS exchange revealed that caffeine and its metabolites act as pure adenosine receptor antagonists at concentrations that correspond to A1 and A2a receptor binding affinities. CONCLUSIONS AND CLINICAL RELEVANCE: Results of our study affirm the presence of guanine nucleotide binding protein linked adenosine receptors (ie, high-affinity A1 and A2a adenosine receptors) in equine forebrain tissues and reveal the antagonistic actions by caffeine and several biologically active caffeine metabolites. Antagonism of adenosine actions in the equine CNS by these stimulants may be responsible for some central actions of methylxanthine drugs, including motor stimulation and enhanced racing performance.  相似文献   

11.
OBJECTIVE: To identify the generation of the superoxide anion by equine spermatozoa. SAMPLE POPULATION: Multiple ejaculates collected from 3 Thoroughbred stallions. PROCEDURES: Induced superoxide production by reduced nicotinamide adenine dinucleotides (NAD[P]H; ie, reduced nicotinamide adenine dinucleotide [NADH] and reduced nicotinamide adenine dinucleotide phosphate [NADPH]) was measured by use of a nitroblue tetrazolium (NBT) reduction assay on whole spermatozoa and a cytochrome c reduction assay on isolated membrane fractions of spermatozoa. Localization of superoxide generation was determined by use of NBT cytochemistry. RESULTS: A dose-dependent increase in NBT reduction was found in the presence of NADPH, which was inhibited by superoxide dismutase (SOD). The flavoprotein inhibitor, diphenyleneiodonium (DPI; 5 or 15 microM), significantly decreased NBT reduction. Cytochrome c reduction by plasma membranes of spermatozoa was significantly higher in the presence of NADPH than in its absence. Cytochemical staining of equine spermatozoa in the presence of NADPH and NADH revealed diaphorase labeling in the spermatozoon midpiece and head. This staining was inhibited by DPI and SOD. CONCLUSIONS AND CLINICAL RELEVANCE: Results of our study indicate that superoxide generation is associated with a membrane-associated NAD(P)H oxidase present in equine spermatozoa, although mitochondrial generation of superoxide is also detected. This oxidase may play a role in cell signaling or may also contribute to cytopathic effects associated with oxidative stress in equine spermatozoa.  相似文献   

12.
Beta-adrenoceptors are important regulators of cardiac function and their characteristics are known to change in human and canine diseased myocardium. This study aimed to determine the density and subtypes of beta-adrenoceptors in the normal and failing equine ventricular myocardium. Membrane preparations of the left papillary muscles were incubated with increasing concentrations of the nonselective beta-adrenoceptor antagonist [3H]-CGP12177. Saturable and reversible binding of [3H]-CGP12177 to myocardial membranes was demonstrated with Kd values (+/- s.d.) of 0.49 +/- 0.40 and 0.43 +/- 0.22 nmol/l and Bmax values of 93.4 +/- 20.5 and 110.0 +/- 21.2 and fmol/mg protein for normal (n = 19) and heart failure (n = 10) tissues, respectively. Heart failure had no significant effect on the density of ventricular beta-adrenoceptors. The cardiac beta-adrenoceptors were further characterised by studying displacement of [3H]-CGP12177 (0.6 nmol/l) with the beta1-selective antagonists CGP20712A and the beta2-selective antagonist ICI118.551. In normal ventricular muscle, CGP20712A was 26 times more potent than ICI118.551 (Ki values 30.4 +/- 24.8 and 814.1 +/- 485.2 nmol/l, respectively). In heart failure cases, CGP 20712A curves were monophasic with a Ki value of 45.6 +/- 39.7 nmol/l. ICI 118.551 curves were biphasic in 5 horses where 11-31% of the cardiac beta-adrenoceptors had a high affinity for ICI 118.551. These data suggest that the normal equine ventricular myocardium possesses predominately beta1-adrenoceptors, with no evidence for co-existence of a significant population of beta2-adrenoceptors. The density of beta-adrenoceptors did not appear to change in heart failure, but the appearance of receptors with a high affinity for ICI118.551 may suggest that, in some cases, heart failure increases the expression of beta2-adrenoceptors in equine ventricular myocardium. This study provides an insight into the role of the adrenergic system in heart disease in the horse. Further studies in this area are warranted.  相似文献   

13.
Endotoxin has been implicated in the pathophysiology of acute laminitis. The aim of this study was to examine the direct effects of endotoxin on isolated equine digital blood vessels. Equine digital veins (EDV), incubated in Krebs-Henseleit solution containing lipopolysaccharide (LPS) (1 microg/ml) became hyporesponsive to 5-HT after 16 h. Cycloheximide and ibuprofen blocked this effect of LPS and increased the maximum response obtained to 5-HT when compared to control vessels. L-nitroarginine methyl ester (L-NAME) reversed the hyporesponsiveness caused by LPS. Vessels maintained in culture medium containing LPS also became hyporesponsive to 5-HT, an effect which was completely prevented by ibuprofen but only partially reversed by L-NAME. Measurements were made of 6-keto PGF1alpha and nitrite production by segments of equine digital artery and vein in culture medium alone or co-cultured with peripheral blood leucocytes. LPS did not stimulate nitrite production from vessel segments but increased nitrite release from leucocytes, an effect which was inhibited by cycloheximide and L-NAME. Lipopolysaccharide increased 6-keto PGF1alpha production by blood vessels, an effect which was inhibited by cycloheximide and ibuprofen but not L-NAME. No synergistic effect on release of nitrite or 6-keto PGF1alpha was noted in co-cultures of blood vessels and leucocytes. These data suggest that induction of cyclo-oxygenase by LPS was a major cause of hyporesponsiveness of digital blood vessels to 5-HT. Release of nitric oxide was not detectable in LPS-stimulated blood vessels maintained in culture even in the presence of activated leucocytes yet L-NAME did protect against LPS-induced hyporesponsiveness indicating nitric oxide synthase induction may play some role in the effect of LPS. These findings are important in furthering our understanding of the pathophysiological mechanisms underlying the vascular changes which occur in acute laminitis.  相似文献   

14.
The direct vasodilatory action of pentoxifylline (1-(5-oxohexyl)-3,7-dimethylxanthine) and its signalling pathway was evaluated in equine digital veins. Cumulative concentration-response curves to pentoxifylline (1 nM to 300 μM) were recorded in phenylephrine-precontracted equine digital vein rings under different experimental conditions. Relaxation to pentoxifylline was partially inhibited by endothelium removal, but was unaltered by CGS-15943 (a non-xanthine adenosine receptor antagonist; 3 μM). Nitric oxide synthase (NOS), soluble guanylate cyclase and cyclooxygenase (COX) inhibitors (Nω-nitro-L-arginine methyl ester (100 μM), ODQ (30 μM) and indomethacin (10 μM), respectively) significantly reduced the maximum relaxation induced by pentoxifylline. Moreover, pentoxifylline-induced relaxation was strongly reduced by Rp-8-Br-PET-cyclic guanosine monophosphate-S (a protein kinase G inhibitor; 3 μM), but remained unaffected by H-89 (a protein kinase A inhibitor; 2 μM). Pentoxifylline-induced relaxation was associated with a 3.4-fold increase in tissue cGMP content. To investigate whether pentoxifylline can affect cAMP- and cGMP-mediated relaxations, curves to forskolin, to sodium nitroprusside (SNP) and 8-bromo-cGMP were also recorded in endothelium-denuded equine digital vein rings pretreated with pentoxifylline (10 and 100 μM). Pentoxifylline only potentiated the SNP-mediated relaxation at the highest concentration (100 μM). Thus, pentoxifylline relaxed equine digital veins via endothelium-dependent and endothelium-independent components. The effect was mediated through both the NOS and COX pathways and could also result from inhibition of cGMP specific-phosphodiesterase activity at the highest concentrations used.  相似文献   

15.
Reasons for performing study: Several conditions associated with laminitis in horses are also associated with insulin resistance, which represents the failure of glucose uptake via the insulin‐responsive glucose transport proteins in certain tissues. Glucose starvation is a possible mechanism of laminitis, but glucose uptake mechanisms in the hoof are not well understood. Objectives: To determine whether glucose uptake in equine lamellae is dependent on insulin, to characterise the glucose transport mechanism in lamellae from healthy horses and ponies, and to compare this with ponies with laminitis. Methods: Study 1 investigated the effects of insulin (300 µU/ml; acute and 24 h) and various concentrations of glucose up to 24 mmol/l, on 2‐deoxy‐D‐[2,6‐3H]glucose uptake in hoof lamellar explants in vitro. Study 2 measured the mRNA expression of GLUT1 and GLUT4 transport proteins by PCR analysis in coronary band and lamellar tissue from healthy horses and ponies, ponies with insulin‐induced laminitis, and ponies suffering from chronic laminitis as a result of equine Cushing's syndrome. Results: Glucose uptake was not affected by insulin. Furthermore, the relationship between glucose concentration and glucose uptake was consistent with an insulin‐independent glucose transport system. GLUT1 mRNA expression was strong in brain, coronary band and lamellar tissue, but was weak in skeletal muscle. Expression of GLUT4 mRNA was strong in skeletal muscle, but was either absent or barely detectable in coronary band and lamellar tissue. Conclusions: The results do not support a glucose deprivation model for laminitis, in which glucose uptake in the hoof is impaired by reduced insulin sensitivity. Hoof lamellae rely on a GLUT1‐mediated glucose transport system, and it is unlikely that GLUT4 proteins play a substantial role in this tissue. Potential relevance: Laminitis associated with insulin resistance is unlikely to be due to impaired glucose uptake and subsequent glucose deprivation in lamellae.  相似文献   

16.
Hemodynamic perturbations, partly resulting from abnormal vasoconstriction of digital vessels, have been implicated in the pathogenesis of bovine and equine laminitis. This study compared the responsiveness of isolated bovine (BDA) and equine (EDA) digital arteries to pharmacological agents that stimulate receptor systems involved in the regulation of normal vessel tone. The role of the endothelium and the short‐ and longer‐term effects of an experimentally induced endothelial damage were also evaluated. Species‐related differences were found in the vessel reactivity to all of the receptor agonists tested. In intact BDA, as compared to intact EDA, norepinephrine was a more effective vasoconstrictor, 5‐hydroxytryptamine a more effective but less potent vasoconstrictor, isoproterenol a less effective vasodilator and carbamylcholine a less potent vasodilator. In BDA, but not in EDA, the contractile responses to norepinephrine and 5‐hydroxytryptamine were enhanced immediately after endothelium removal. However, the contractile reactivity of denuded BDA returned to basal values following overnight incubation. The differences suggest species specificity for the pathophysiology of digital vasomotor tone and function in horses and cattle.  相似文献   

17.
Neutrophils are recruited to the lungs of horses with chronic obstructive pulmonary disease (COPD) and exhibit increased activity after antigen challenge, which may contribute to inflammation and lung damage. Inhibition of phosphodiesterase isoenzymes (PDEs) has been shown to attenuate human neutrophil functions including superoxide production, leukotriene (LT)B4 biosynthesis, enzyme and chemokine release. As equine neutrophils contain predominantly the isoenzyme, PDE4, the present study was undertaken to investigate the effects of rolipram, a PDE4 inhibitor, on equine neutrophil function. For comparison, the effects of the nonselective PDE inhibitor, theophylline, were examined. Cells from both normal horses and COPD horses in remission were used. Superoxide production was significantly inhibited by both rolipram [32.2 +/- 2.6 vs. 10.1 +/- 1.1 nmol/10(6) cells and 49.8 +/- 6.8 vs. 22.7 +/- 2.2 nmol/10(6) cells for normal and COPD susceptible horses, respectively, in response to 10(-7) M human recombinant (hr) C5a] and theophylline (19.0 +/- 0.6 vs. 10.2 +/- 0.6 nmol/10(6) cells and 24.3 +/- 2.1 vs. 10.7 +/- 0.9 nmol/10(6) cells for normal and COPD susceptible horses, respectively, in response to 10(-7) M C5a). However, superoxide production induced by serum treated zymosan was inhibited only by theophylline (10(-3) M). Neither hrC5a- nor platelet activating factor (PAF)-induced neutrophil adherence to fibronectin coated plastic was reduced by rolipram (10(-5) M). These results demonstrate that the effects of PDE inhibitors on equine neutrophils are both stimulus and function dependent. The PDE4 inhibitors may reduce neutrophil activation in vivo in horses with COPD.  相似文献   

18.
OBJECTIVE: To compare the responses of equine digital arteries (EDAs) and equine digital veins (EDVs) to endothelin-1 (ET-1) and determine the role of the endothelium and type of receptors involved in the modulation and mediation of those responses, respectively. SAMPLE POPULATION: 5 to 9 palmar digital vessels/experiment from 28 healthy horses. PROCEDURE: Rings of dissected vessels were mounted under tension between force transducer wires in organ baths containing Krebs-Henseleit solution at 30 degrees C. Responses of EDAs and EDVs (with intact [+e] or denuded [-e] endothelium) to cumulative concentrations of ET-1 (10(-10) to 3 X 10(-7) M) were compared. For (+e)EDAs and (+e)EDVs precontracted with a thromboxane-mimetic (U44069; 10(-8) M) and (-e)EDAs and (-e)EDVs, responses to an ETB receptor agonist (S6c; 10(-10) to 3 X 10(-7) M) were evaluated. Responses to ET-1 (10(-7) M) in (-e)EDAs and (-e)EDVs were evaluated after incubation with an ETA receptor antagonist (BQ-123; 3 X 10(-7) M), an ETB receptor antagonist (BQ-788; 3 X 10(-7) M), or vehicle solution. RESULTS: Endothelin-1 induced a concentration-dependent contraction of endothelium-intact and -denuded EDAs and EDVs; EDVs were more sensitive. Neither vessel type relaxed in response to S6c, although 2 of the (-e)EDAs contracted mildly. Whereas BQ-123 inhibited the (-e)EDA and (-e)EDV responses to ET-1, BQ-788 had no effect. CONCLUSIONS AND CLINICAL RELEVANCE: Endothelin-1 induced digital vasoconstriction (marked constriction in veins). This action was unaffected by endothelium and mediated predominantly by ETA receptors. These findings suggest ET-1 can induce selective digital venoconstriction.  相似文献   

19.
Glucose serves as the major energy substrate for articular chondrocytes and as the main precursor for the synthesis of extracellular matrix glycosaminoglycans in cartilage. Chondrocytes have been shown to express several glucose transporter (GLUT) isoforms including GLUT1 and GLUT3. The aim of this investigation was to determine the effects of endocrine and cytokine factors on the capacity of equine articular chondrocytes for transporting 2-deoxy-d-[2,6-3H] glucose and on the expression levels of GLUT1 and GLUT3. Chondrocytes maintained in monolayer culture were stimulated for 24 h with TNF-alpha (100 ng mL(-1)), IL-1beta (100 ng mL(-1)), IGF-I (20 ng mL(-1)), TGF-beta (20 ng mL(-1)) and insulin (12.5 microg mL(-1)) before measuring uptake of non-metabolizable 2-deoxyglucose in the presence and absence of the glucose transport inhibitor cytochalasin B. Polyclonal antibodies to GLUT1 and GLUT were used to compare GLUT1 and GLUT3 expression in stimulated and un-stimulated alginate encapsulated chondrocytes by Western blotting. Results indicated that 2-deoxyglucose uptake was inhibited by up to 95% in the presence of cytochalasin B suggesting that glucose uptake into equine chondrocytes is GLUT-mediated. Insulin had no effect on glucose uptake, but treatment with IGF-I, TGF-beta, IL-1beta and TNF-alpha resulted in a significant increase (>65%) in 2-deoxyglucose uptake compared to control values. GLUT1 was found to be increased in chondrocytes stimulated with all the growth factors and cytokines but GLUT 3 was only upregulated by IGF-I. The data presented support a critical role for glucose in the responses of equine articular chondrocytes to pro-inflammatory cytokines and anabolic endocrine factors.  相似文献   

20.
The effects of 5-hydroxytryptamine (5-HT), HTF 919, a new 5-HT(4) agonist, and the antagonists SB 203-186 (5-HT(4)) and tropisetron (5-HT(3)) on intestinal motility were tested in vitro on isolated preparations of horse ileum and pelvic flexure. Concentration-response curves were created by cumulative application of the agonists with or without preincubation of the antagonists. The 5-HT preparation induced a concentration-dependent contraction in equine ileum and pelvic flexure. The results indicate that 5-HT receptors are present in all parts of equine intestine investigated in this study. Tropisetron was found to act as a noncompetitive antagonist in all locations of the equine intestine. SB 203-106 was confirmed as an antagonist to 5-HT in the equine ileum circular muscle, in pelvic flexure circular and longitudinal muscle. Nevertheless, a discernible increase of smooth muscle contractions caused by HTF 919 could only be observed in pelvic flexure. In accordance with an earlier study in the guinea pig, in the equine gut HTF 919 acted as a partial agonist for the 5-HT(4) receptor with an affinity constant in the nanomolar range. It is concluded that 5-HT receptors, and especially their subtypes, may represent a promising target for the treatment and prevention of gastrointestinal (GI) motility disorders in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号