首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

2.
AM菌对三叶草吸收、累积重金属的影响   总被引:4,自引:0,他引:4  
采用4室根箱培养系统,探讨了Cu、Zn、Pb、Cd 4种重金属复合污染土壤中,丛枝菌根菌对三叶草生长及吸收、累积重金属的作用,结果表明:重金属Cu 100mg/kg、Zn 600mg/kg、Pb 300mg/kg、Cd 10mg/kg的复合污染对三叶草生物量影响较小,但土壤重金属处理使丛枝菌根菌Glomus intraradices和Glomus caledonium对三叶草的侵染率分别降低53%和56%,菌种G.intraradice的菌丝密度降低73%;接种菌根真菌能明显减少重金属复合污染土壤中三叶草对Cu、Cd和Pb的吸收,并强化根系在限制重金属Pb和Cd向地上部运输中的作用,地上部Pb和Cd含量分别下降24.2%~55.3%和65%~97.9%,使三叶草地上部Cd和Pb含量均低于我国牧草重金属安全含量,提高了三叶草可食部分的质量;不同菌根真菌对三叶草吸收、累积及分配重金属的影响有明显差异,Glomus intraradices对减少三叶草对重金属的吸收及其在地上部可食部分的累积的作用大于Glomus caledonium。丛枝菌根菌对于强化三叶草根系对重金属的固持作用,调节生态系统中重金属的生物循环,减轻重金属对食物链的污染风险方面起着重要作用。  相似文献   

3.
A comprehensive knowledge on the relationship between soil salinity and arbuscular mycorrhizal fungi (AMF) is vital for a deeper understanding of ecosystem functioning under salt stress conditions. The objective of this study was to determine the effects of soil salinity on AMF root colonization, spore count, glomalin related soil protein (GRSP) and community structure in Saemangeum reclaimed land, South Korea. Soil samples were collected and grouped into five distinct salt classes based on the electrical conductivity of soil saturation extracts (ECse). Mycorrhizal root colonization, spore count and GRSP were measured under different salinity levels. AMF community structure was studied through three complementary methods; spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Results revealed that root colonization (P < 0.01), spore count (P < 0.01) and GRSP (P < 0.01) were affected negatively by soil salinity. Spore morphology and T-RFLP data showed predominance of AMF genus Glomus in Saemangeum reclaimed land. T-RFLP and DGGE analysis revealed significant changes in diversity indices between non (ECse < 2 dS/m) and extremely (ECse > 16 dS/m) saline soil and confirmed dominance of Glomus caledonium only in soils with ECse < 8 dS/m. However, ribotypes of Glomus mosseae and Glomus proliferum were ubiquitous in all salt classes. Combining spore morphology, T-RFLP and DGGE analysis, we could show a pronounced effect in AMF community across salt classes. The result of this study improve our understanding on AMF activity and dominant species present in different salt classes and will substantially expand our knowledge on AMF diversity in reclaimed lands.  相似文献   

4.
Using an in vitro bioreactor system in which the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown in a soil devoid of detectable living microbes, we could show that the mycelium of this fungus contributed to the maintenance of water-stable soil aggregates and increased soil water repellency, as measured by water drop penetration time. This is to our knowledge the first demonstration of a causal link between AM fungal growth and water repellency of soil aggregates. Our results also place AM fungal contributions to soil aggregation on a firm mechanistic footing by showing that hyphae are sufficient to produce effects, in the absence of other soil biota, which have always been included in previous studies.  相似文献   

5.
Abstract

A glasshouse study was conducted to investigate the symbiotic efficiency and soil adaptability of four AMF using glass-bead cultivation systems. The results showed that efficiency and adaptability of four fungi varied among three soils. Particularly, efficiency of BEG167 shifted from positive in Beijing soil to negative in Guangdong soil. Furthermore, BEG167 had high adaptability in all three soils. Intraspecific differences of BRG168 and BEG221 were found in efficiency and adaptability in three soils. Taking efficiency and adaptabilty into consideration, it was concluded that BEG167, BEG168 and BEG221 in Beijing soil, BEG151 in Hubei soil, and BEG151 and BEG168 in Guangdong soil were effective AMF for maize.  相似文献   

6.
A field experiment was carried out to assess the effect of a combined treatment involving addition of Aspergillus niger-treated dry olive cake (DryOC) in the presence of rock phosphate, plus pre-transplant inoculation of seedlings with the arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus deserticola or Glomus mosseae, on the establishment of Dorycnium pentaphyllum L., in a degraded semiarid Mediterranean area. Associated changes in soil labile C fractions, enzyme activities and aggregate stability were also observed. One year after planting, the combined treatment of fermented DryOC addition and inoculation with AM fungi, particularly with G. mosseae (on average 328% greater than control plants), had the strongest effect on the shoot biomass of D. pentaphyllum. Only the fermented DryOC addition increased assimilable P, total N and aggregate stability, the greatest increase being in the soil available P content (about four-fold higher than in the non-amended soil). Both the addition of fermented DryOC and the mycorrhizal inoculation treatments significantly increased enzyme activities of rhizosphere soil (dehydrogenase, protease-BAA, acid phosphatase and β-glucosidase). The microbially-treated DryOC proved to be an effective amendment for improving the soil quality which, in turn, enhanced the success of revegetation with mycorrhizal D. pentaphyllum seedlings.  相似文献   

7.
Both arbuscular mycorrhizal (AM) fungi and ammonia oxidizers are important soil microbial groups in regulating soil N cycling. However, knowledge of their interactions, especially the direct influences of AM fungi on ammonia oxidizers is very limited to date. In the present study, a controlled microcosm experiment was established to examine the effects of AM fungi and N supply level on the abundance and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA) in the rhizosphere of alfalfa plants (Medicago sativa L.) inoculated with AM fungus Glomus intraradices. Effects were studied using combined approaches of quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The results showed that inoculation with AM fungi significantly increased the plant dry weights, total N and P uptake. Concomitantly, AM fungi significantly decreased the amoA gene copy numbers of AOA and AOB in the root compartment (RC) but not in the hyphal compartment (HC). Moreover, AM fungi induced some changes in AOA community structure in HC and RC, while only marginal variations in AOA composition were observed to respond to N supply level in HC. Neither RC nor HC showed significant differences in AOB composition irrespective of experimental treatments. The experimental results suggested that AM fungi could directly shape AOA composition, but more likely exerted indirect influences on AOA and AOB abundance via the plant pathway. In general, AM fungi may play an important role in mediating ammonia oxidizers, but the AOA community appeared to be more sensitive than the AOB community to AM fungi.  相似文献   

8.
AM真菌接种对甘薯产量和品质的影响   总被引:3,自引:0,他引:3  
通过田间试验方法研究了接种AM真菌对甘薯产量和品质的影响。结果表明,种植6周时接种能够提高甘薯的菌根侵染率、生长和吸P量,收获时可提高甘薯的产量和品质。从接种效果看,本地分离的菌株接种效果好于异地分离菌株,混合菌株好于单一菌株。  相似文献   

9.
丛枝菌根真菌对棉花耐盐性的影响研究   总被引:17,自引:2,他引:17       下载免费PDF全文
盆栽灭菌试验研究丛枝(AM)真菌对棉花耐盐性的影响结果表明,自然盐渍化土壤和人工模拟盐渍条件下接种AM真菌处理的生物产量显著高于不接种处理,相同土壤下菌根真菌对棉花植株生长的促进作用随盐水平的提高而增大,表明AM真菌与植株建立的共生关系有利于棉花在盐渍土壤中生长。盐胁迫下棉花植株对P的需要量增加,接种AM真菌可提高植株含P量,促进植株生长,提高棉花的耐盐性。  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi form associations with most land plants and can control carbon, nitrogen, and phosphorus cycling between above- and belowground components of ecosystems. Current estimates of AM fungal distributions are mainly inferred from the individual distributions of plant biomes, and climatic factors. However, dispersal limitation, local environmental conditions,and interactions among AM fungal taxa may also determine local diversity and global distributions. We assessed the relative importance of these potential controls by collecting 14,961 DNA sequences from 111 published studies and testing for relationships between AM fungal community composition and geography, environment, and plant biomes. Our results indicated that the global species richness of AM fungi was up to six times higher than previously estimated, largely owing to high beta diversity among sampling sites. Geographic distance, soil temperature and moisture, and plant community type were each significantly related to AM fungal community structure, but explained only a small amount of the observed variance. AM fungal species also tended to be phylogenetically clustered within sites, further suggesting that habitat filtering or dispersal limitation is a driver of AM fungal community assembly. Therefore, predicted shifts in climate and plant species distributions under global change may alter AM fungal communities.  相似文献   

11.
12.
The effect of the soil yeast, Rhodotorula mucilaginosa LBA, on Glomus mosseae (BEG n°12) and Gigaspora rosea (BEG n°9) was studied in vitro and in greenhouse trials. Hyphal length of G. mosseae and G. rosea spores increased significantly in the presence of R. mucilaginosa. Exudates from R. mucilaginosa stimulated hyphal growth of G. mosseae and G. rosea spores. Increase in hyphal length of G. mosseae coincided with an increase in R. mucilaginosa exudates. No stimulation of G. rosea hyphal growth was detected when 0.3 and 0.5 ml per petri dish of yeast exudates was applied. Percentage root length colonization by G. mosseae in soybean (Glycine max L. Merill) and by G. rosea in red clover (Trifolium pratense L. cv. Huia) was increased only when the soil yeast was inoculated before G. mosseae or G. rosea was introduced. Beneficial effects of R. mucilaginosa on arbuscular mycorrhizal (AM) colonization were found when the soil yeast was inoculated either as a thin agar slice or as a volume of 5 and 10 ml of an aqueous solution. R. mucilaginosa exudates (20 ml per pots) applied to soil increased significantly the percentage of AM colonization of soybean and red clover.  相似文献   

13.
AM 菌根真菌诱导对提高玉米纹枯病抗性的初步研究   总被引:13,自引:1,他引:13  
试验研究玉米接种摩西球囊霉后对纹枯病抗性反应的结果表明,接种摩西球囊霉能明显减轻玉米纹枯病的发病率和病情指数,减轻病害。接种摩西球囊霉还能促进玉米营养生长,但立枯丝核菌侵袭会降低菌根的侵染率,表明摩西球囊霉与立枯丝核菌间存在相互作用。  相似文献   

14.
Burkholderia pseudomallei, the bacterial cause of the potentially fatal infection known as melioidosis, has a facultative intracellular lifestyle. The intracellular presence of B. pseudomallei in various eukaryotes including arbuscular mycorrhizal fungus (AMF) spores can be demonstrated in vitro. AMF spores were isolated from soils in a melioidosis-endemic area. B. pseudomallei and other Burkholderia spp. DNA was detected in these AMF spore samples, confirming an AMF spore-Burkholderia spp. association in soils which did not yield Burkholderia spp. by culture. This association may explain the environmental persistence, difficulty of recovery and dispersal of Burkholderia spp. in specific environments.  相似文献   

15.
The external hypha of arbuscular mycorrhizal (AM) fungi, extending from roots out into soil, is an important structure in the uptake of phosphate from the depletion zone around each root. In this paper, we analysed some phospholipid fatty acids (PLFAs) derived from external hyphae of four AM fungi (Glomus etunicatum, Glomus clarum, Gigaspora margarita and Gigaspora rosea) to find fatty acids which may be useful as specific markers for identifying and quantify the external hyphae of Gigaspora species. Leek (Allium porrum L.) seedlings inoculated with each AM fungus were grown in river sand. Sand samples were collected and four PLFAs (16:1ω5, 18:1ω9, 20:1ω9 and 20:4) in the sand were analysed. In addition, the hyphal biomass in the sand was determined by the direct microscopic method. PLFAs 18:1ω9 and 20:4 were found in all the AM-inoculated and non-inoculated sand samples. PLFA 16:1ω5 was detected in the sand inoculated with G. etunicatum, G. clarum and Gi. rosea. PLFA 20:1ω9 was detected only in the sand inoculated with Gi. rosea. PLFAs 16:1ω5 and 20:1ω9 were not found in the sand inoculated with Gi. margarita. The amount of PLFA 20:1ω9 was closely correlated with the amount of biomass of external hyphae of Gi. rosea (r=0.937, P<0.001), whereas no correlation was observed for PLFA 16:1ω5. The 20:1ω9 content of Gi. rosea was approximately 6.56 nmol mg−1 hyphal biomass. We suggest that PLFA 20:1ω9 can be used as a specific marker for identifying and quantifying the external hyphae of Gi. rosea, at least in controlled experimental systems.  相似文献   

16.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   

17.
We investigated how the rate of colonization by indigenous arbuscular mycorrhizal fungi (AMF) affects the interaction between AMF, Sinorrhizobium meliloti and Medicago truncatula Gaertn. To generate a differential inoculum potential of indigenous AMF, five cycles of wheat, each of 1 month, were grown in sieved or undisturbed soil before M. truncatula was sown. The early colonization of M. truncatula roots by indigenous AMF was faster in undisturbed soil compared with sieved soil, but by pod-fill the frequency of hyphae, arbuscules and vesicles was similar in both treatments. At this latter stage, M. truncatula grown in undisturbed soil had accumulated a greater biomass in aboveground tissues, had a greater P concentration and derived more N from the atmosphere than plants grown in disturbed soil, although soil compaction resulted in plants having a smaller root system than those from disturbed soil. The difference in plant P content could not be explained by modifications in hydrolytic soil enzymes related to the P cycle as the activity of acid phosphatase was greater in sieved than in undisturbed soil, and the activity of alkaline phosphatase was unaffected by the treatment. Thus, the results observed were a consequence of the different rates of AMF colonization caused by soil disturbance. Together with earlier results for soybean, this study confirms that soil disturbance modifies the interaction between indigenous AMF, rhizobia and legumes leading to a reduced efficacy of the bacterial symbiont.  相似文献   

18.
Seed-applied fungicides are commonly used to prevent or suppress fungal disease organisms in pulse crop production. However, non-target beneficial fungi, such as arbuscular mycorrhizal fungi (AMF), also may be affected. Seed-applied fungicides Agrox® FL (active ingredient: captan), Allegiance™ FL (metalaxyl), Apron Maxx® RTA® (fludioxonil and metalaxyl), Thiram 75WP (thiram), Vitaflo® 280 (carbathiin and thiram), Crown® (carbathiin and thiabendazole), and Trilex® AL (trifloxystrobin and metalaxyl) were assessed in a greenhouse study for their effects on colonization and development of AMF in pea and chickpea, and the consequent impact on plant growth. In the absence of disease pressure, systemic fungicides Allegiance™ FL, Apron Maxx® RTA®, Vitaflo® 280, Crown® and Trilex® AL restricted mycorrhizal colonization, host growth and P uptake to different levels. In contrast, contact fungicides Agrox® FL and Thiram 75WP had minimal effects on mycorrhizal colonization, host growth and P uptake. Although consequent sporulation and glomalin-related protein production were not significantly affected by fungicides at an early host growth stage, the compositional structure of the AMF community in host roots was significantly altered in response to Agrox® FL, Allegiance™ FL, Apron Maxx® RTA®, and Trilex® AL as revealed by pyrosequencing-based analysis of fungal 18S rRNA. These results indicate that the suppressive effects of seed-applied fungicides on AMF development depend on specific fungicide-AMF interactions.  相似文献   

19.
Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC) and two lateral root-free compartments (RFC). One RFC contained untreated soil while the other RFC contained soil, which was uniformly mixed with sugar beet waste, either untreated (SB) or degraded by A. niger (ASB) in a rock phosphate (RP)-supplied medium. The soil in each pair of RFC was labelled with 33P and 32P in order to measure P uptake by the AM fungal mycelium, of which length density was also measured. Whole cell fatty acid (WCFA) signatures were used as biomarkers of the AM fungal mycelium and other soil microorganisms. The amount of biomarkers of saprotrophic fungi and both Gram-positive and Gram-negative bacteria was higher in SB than in ASB treatments. Whilst ASB increased growth and activity of AM mycelium, SB had the opposite effect. Moreover, shoot P content was increased by the addition of ASB, and by inoculation with AM fungi. Modification of soil microbial structure and production of exudates by A. niger, as a consequence of fermentation process of sugar beet waste, could possibly explain the increase of AM growth in ASB treatments. On the other hand, the highest P uptake was a result of the solubilisation of rock phosphate by A. niger during the fermentation.  相似文献   

20.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号