首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We quantified the effects of tillage practice and repeated compost (municipal solid waste compost, MSW, and co‐compost of sewage sludge and green wastes, SGW, compared with a control plot without compost addition, CONT) application on bromide and isoproturon transport into the tilled horizon of a loamy Albeluvisol. To do this we conducted field measurements of near‐saturated hydraulic conductivity (K), bromide and isoproturon leaching in column experiments and batch isoproturon sorption measurements. While the K measurements showed that tillage practice had the major effect compared with the different organic amendments, with greater conductivities measured after ploughing and smaller Kvalues measured after sowing, the column leaching experiments showed no statistically significant effect of either the tillage practice or the compost amendments. The batch sorption coefficient, Kd, of isoproturon increased in the order CONT < MSW < SGW, while the leaching of isoproturon for the MSW and SGW was either equal, retarded or quicker compared with CONT. Rate‐limited sorption of isoproturon in the CONT and SGW treatments columns was found, and the overall dissipation of isoproturon increased in the order CONT < SGW < MSW. It was suggested that irreversible sorption as well as degradation occured during isoproturon leaching.  相似文献   

2.
The objectives of this work were to (a) investigate the short-term effects of applications of mineral fertilizer, municipal solid waste (MSW) compost, and two sewage sludges (SSs) subjected to different treatments (composting and thermal drying) on microbial biomass and activity of soil by measuring microbial biomass C, adenosine 5′-triphosphate content, basal respiration, and dehydrogenase, catalase, urease, phosphatase, β-glucosidase, and N-α-benzoyl-l-argininamide-hydrolyzing activities and (b) explore the relationships between soil microbiological, biochemical, and chemical properties and wheat yields under semiarid field conditions by principal component analysis. The additions of MSW compost, SS compost, and thermally dried SS did not affect significantly soil microbial biomass, as compared to mineral fertilization and no amendment. However, microbial activity increased in organically amended soils, probably due to the stimulating effect of the added decomposing organic matter. Changes in soil microbiological and biochemical properties showed no significant relationships with wheat yields, probably because plant growth was primarily water-limited, as typically occurs in semiarid regions.  相似文献   

3.
4.
Organic carbon sustainability in a gravelly calcareous soil is a great challenge under the humid conditions of south Florida. The beneficial effects of compost utilization on soil fertility prompted an investigation on (i) accumulation of total organic carbon and (ii) the soil organic carbon (SOC) in humin, humic acid (HA) and fulvic acid (FA) fractions in a gravelly calcareous soil amended with composts or inorganic fertilizer. In 1996 and 1998, compost from municipal solid waste (MSW) (100% MSW), Bedminster cocompost (75% MSW and 25% biosolids) and biosolids compost (100% biosolids) at 72, 82.7 and 15.5 Mg ha?1, respectively, were each incorporated in soil beds and inorganic fertilizer (6-2.6-10) NPK at 2.8 Mg ha?1. A control (no amendment) treatment was also included. Total organic carbon and various fractions of soil organic carbon were determined in two depths (0-10 and 10-22 cm) for both soil particles (< 2mm) and pebbles (> 2mm). Inorganic and organic soil amendments had decreased soil pH and increased soil electrical conductivity (EC) 19 months from initial application. Total organic carbon contents in soil particle were 4-, 3-, and 2-fold higher in MSW compost, Bedminster cocompost and biosolids compost treatments, respectively, than those in fertilizer treated or non-treated soils. MSW compost increased total organic carbon in pebbles by 4- and 3-fold in the 0-10 and 10-22 cm deep layers, respectively, more than other treatments. The soil organic carbon accumulation decreased with depth in all treatments in soil particles, but did not in pebbles. Amending soils with MSW compost significantly increased the organic carbon in humin, HA and FA fractions more than those treated with inorganic fertilizer or non-amended. MSW compost has a potential to be used as a soil amendment to increase and sustain the organic carbon in calcareous soils of south Florida.  相似文献   

5.
采用盆栽试验研究了蔬菜废弃物堆肥对小白菜的增产效果、土壤养分含量、土壤微生物量和酶活性的影响。结果表明,蔬菜废弃物堆肥能够显著提高盆栽小白菜的产量和品质,其中30 t/hm2的高量蔬菜废弃物堆肥将产量提高了66.26%,将品质指标Vc、可溶性糖和可溶性蛋白含量显著提高了35.64%、183.36%和39.42%。蔬菜废弃物堆肥能够显著提高土壤质量,有机质、总氮、碱解氮、有效磷、速效钾含量和土壤微生物量碳、氮,以及土壤淀粉酶、脲酶、磷酸酶、脱氢酶活性的土壤质量指标。与牛粪相比较,高用量的蔬菜废弃物堆肥处理在小白菜产量、可溶性蛋白含量、土壤碱解氮、有效磷、速效钾含量、磷酸酶活性上显著高于牛粪;而在可溶性糖含量、土壤有机质含量、土壤微生物量、淀粉酶、脱氢酶活性上显著低于牛粪。综合而言,蔬菜废弃物堆肥能够提高土壤质量,增加蔬菜产量和品质;在蔬菜产量方面,蔬菜废弃物堆肥优于牛粪,在蔬菜品质和土壤质量方面,蔬菜废弃物堆肥与牛粪相当。  相似文献   

6.
An interesting alternative to landfills for disposing of organic residues is their addition to soil as composted organic residues. There is little information available about the long‐term benefits following prolonged periods of application. After 12 years of annual incorporation of organic amendments to the soil of a vineyard, three soil characteristics were analysed: mineral content, bacterial community and soil greenhouse gas (GHG) emissions. The organic amendments were (i) a pelletized organic compost (PEL) made from plant, animal and sewage sludge residues, (ii) a compost made from the organic fraction of municipal solid waste (OF‐MSW) and (iii) a stabilized sheep manure compost (SMC). Mineral fertilizer (NPK) and an unaltered control treatment were also included. Our results showed that long‐term application of treated residues as compost changed soil nutrient content, bacterial community and gas emission rates. For instance, SMC increased nutrients and soil organic matter (OM) throughout the experiment. There was a change in bacterial community structure, with an increase in the phylum Proteobacteria observed for all four treated soils, and an increase in the phylum Bacteroidetes for PEL, OF‐MSW and SMC treatments. Among the organically‐amended soils, the amount of Adhaeribacter increased by a factor of 2.5 times more than the control, which reported a total of 2.0% of the bacterial community compared with 5.6% for PEL, 5.2% for OF‐MSW and 5.0% for SMC. Adhaeribacter may be a genus that specializes in the degradation of residues in the different composts. The SMC treatment had the largest Chao1 estimator and was the most biodiverse of all treatments. These changes in bacterial community structure did not correlate with the observed GHG fluxes from the sampling day. The application of amendments did not affect N2O fluxes. However, the application of treatments slightly reduced the capacity for CH4 sequestration by soil with respect to the untreated soils. Compost is an effective method to increase soil fertility. Soil GHG emissions should be further evaluated.  相似文献   

7.
Growing interest in the use of biofiltration technology to remove toxic organic compounds from gaseous waste streams has led to the investigation of various solid packing materials to support microbial populations capable of contaminant biodegradation. Finished compost material has been used as a biofiltration packing matrix for the treatment of noxious odors and the removal of several gaseous organic contaminants. Trichloroethylene (TCE), a widespread groundwater contaminant, has been shown to undergo aerobic biodegradation under a variety of environmental conditions. The current investigation focused on the capacities of five different finished compost materials to remove TCE from head space vapors in small reaction flasks. Due to the cometabolic nature of aerobic TCE biodegradation, enrichment of compost materials with propane or methane as primary substrates was tested as a means to stimulate biological TCE removal. Results indicate that all of the materials tested removed at least 85 percent of the added TCE (initial head space concentration = 5.0 ppmv) without enrichment and over 99 percent total removal was observed in samples enriched with propane gas. Rapid adsorption of TCE accounted for up to 77 percent of the removal observed in the reactors. This study suggests that finished compost material from a variety of sources has considerable potential for use as a biofiltration packing material for the treatment of chlorinated solvent vapors in waste gas streams.  相似文献   

8.
半干旱退化土壤中施入城市垃圾的长期效应研究   总被引:1,自引:0,他引:1  
The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity;microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, β-glucosidase, and N-α-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg-1 soil with the highest MSW doses, compared to 4.30 g kg-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.  相似文献   

9.
Municipal solid waste (MSW) composts have been frequently used as N and C amendments to improve soil quality and to support plant growth, with the additional benefit of reducing waste disposal costs. However, attention has been paid to the risks of MSW use for the soil environment. The presence of heavy metals in MSW composts can affect some microbiological characteristics of soil such as the structure of the soil microbiota, which are responsible for the transformations making nutrients available to plants. The effects of MSW compost and mineral-N amendments in a 2-year field trial on some physical-chemical properties, some enzyme activities and the genetic diversity of cropped plots (sugar beet-wheat rotation) and uncropped plots were investigated. Variations of pH were not statistically related to MSW compost and mineral-N amendments, or to the presence of the crop. Amendment with MSW compost increased the organic C and total N contents, and dehydrogenase and nitrate reductase activities of soil. In cropped plots amended with MSW compost, dehydrogenase activity was positively correlated with #-glucosidase activity, and both enzyme activities with organic C content. No MSW compost dosage effect was detected. No effects were observed on denaturing gradient gel electrophoresis and amplified rDNA restriction analysis patterns, indicating that no significant change in the bacterial community occurred as a consequence of MSW amendment.  相似文献   

10.
For three years, source separated municipal solid waste (MSW) compost was applied in the field at two rates (25 and 50 T/A) and planted with tomatoes. Average yield (lbs/plant) from plots amended with 50 T/A MSW compost was significantly greater all three years than the unamended controls. Yield from plots amended with 25 T/A MSW compost was significantly greater than the unamended control only in 1993. The average number of tomatoes per plant and the average weight of each tomato were also greater from the compost-amended plots. The addition of 50 T/A MSW compost for three years raised the pH of the soil from 5.8 to 6.4 and raised the percent organic matter 84 percent. The concentration of nitrate in plots amended yearly with 50 T/A MSW compost was three fold greater than the unamended control.  相似文献   

11.
Municipal solid waste (MSW) composts have been used to maintain the long-term productivity of agroecosystems and to protect the soil environment from overcropping, changes in climatic conditions and inadequate management; they also have the additional benefit of reducing waste disposal costs. Since MSW may contain heavy metals and other toxic compounds, amendments cannot only influence soil fertility, but may also affect the composition and activity of soil microorganisms. The effects of MSW compost and mineral N amendments in a 6-year field trial on some physical-chemical properties, enzyme activities and bacterial genetic diversity of cropped plots (Beta vulgaris-Triticum turgidum rotation) and uncropped plots were investigated. The compost was added at the recommended and twice the recommended dosage (12, 24 t ha−1). Amendments of cropped plots with MSW compost increased the contents of organic C from 13.3 to 15.0 g kg−1 soil and total N from 1.55 to 1.65 g kg−1 soil. There were significant increases in dehydrogenase (9.6%), β-glucosidase (13.5%), urease (15.4%), nitrate reductase (21.4%) and phosphatase (9.7%) activities. A significant reduction in protease activity (from 3.6 to 2.8 U g−1 soil) was measured when a double dose of compost was added to the cropped plots. No dosage effect was detected for the other enzymes. Changes in the microbial community, as a consequence of MSW amendment, were minimal as determined using denaturing gradient gel electrophoresis, rDNA internal spacer analysis and amplified ribosomal DNA restriction analysis of bacteria, archaea, actinomycetes, and ammonia oxidizers. This indicates that there was no significant variation in the overall bacterial communities nor in selected taxonomic groups deemed to be essential for soil fertility.  相似文献   

12.
EM堆肥对土壤生物影响的研究   总被引:4,自引:0,他引:4  
长期定点施用EM堆肥试验结果表明:EM有机堆肥能提高土壤细菌、真菌、放线菌数量;相同有机物料投入水平下,EM堆肥处理的微生物总量最高;随着有机物料投入水平的降低,土壤微生物数量下降;施用EM能提高土壤微生物活性,增加微生物的分布密度。施用EM堆肥土壤蚯蚓数量均显著高于其他施肥处理。EM堆肥各处理平均土壤螨虫数量高,但在相同的有机物料投入水平下,差异不显著。在大部分作物生长期,施EM 15t/hm2处理与化肥处理和对照处理土壤生物总量差异显著。  相似文献   

13.
绿化植物废弃物堆肥对城市绿地土壤的改良效果   总被引:13,自引:2,他引:11  
顾兵  吕子文  方海兰  李桥  郝冠军 《土壤》2009,41(6):940-946
针对城市中普遍存在的绿地土壤退化和有机废弃物处理处置难的现状,选择典型城市土壤进行绿化植物废弃物堆肥不同用量的绿地现场土壤改良实验.结果表明:绿化植物废弃物堆肥能提高土壤持水能力;降低土壤的酸碱度;增加土壤有机质、总N、总P、有效P、生物量C、N和微生物总量;堆肥对土壤全K的含量总体影响不大,但速效K的含量却成倍增加;说明绿化植物废弃物能改善土壤理化性质,提高土壤肥力,且随着堆肥用量的增加,对土壤的改良作用也越显著;鉴于绿化植物废弃物高C/N,其用量宜控制在13240 kg/hm~2以内.绿化植物废弃物堆肥就地利用即能改良城市退化土壤,又减少城市废弃物量,有利于提高城市生态环境质量.  相似文献   

14.
Wet olive husks represent an environmental problem in Mediterranean areas but also a potential resource as recyclable organic matter. In the present work, we describe the composting of wet olive husks, using mechanically turned piles without forced ventilation, carried out to study the effects of partially composted oil-depleted husks as a starter for wet husks degradation. At the beginning of the composting process, protease and dehydrogenase activity, along with the microbial respiration, were higher in the piles with the starter, demonstrating a higher microbial activity in comparison with the piles without the starter. At the end of the process, the compost with the starter showed a deeper humification and a lower content of total organic carbon with respect to the compost without the starter, indicating a higher level of biodegradation and organic matter evolution. The main outcome of this research includes the possibility to: (a) detoxify and de-odorize a bad-smelling waste into an hygienically safe product; (b) produce a green, mature, humified compost useful to restore soil fertility and texture in intensive and organic agriculture.  相似文献   

15.
Organic amendment and tillage reduction are two common practices to contrast soil organic matter decline, thus promoting sustainable cropping and carbon sequestration. In a horticultural land use system under Mediterranean climate, we evaluated the 9-year effects of two compost inputs (15 and 30 t ha−1 y−1, low and high input, respectively) and two tillage intensities (intensive and reduced) on soil macronutrients concentration, microbial biomass and activity. Total organic C, total N and POlsen were smaller in plots amended at low input, whilst intensive tillage decreased them at both compost inputs. These decreases in intensively tilled plots was ascribed to the disruption of soil aggregates, with consequent microbial degradation of the physically protected organic matter by oxidative processes. On the contrary, reduced tillage increased the extractable C, likely due to a higher protection of the most labile soil C fraction from the mineralization. Similarly, microbial biomass C and N increased following both doubling compost input and reducing tillage intensity, with a greater effect by the first factor. The higher values of cumulative 10-day basal and 20-h glucose-induced respiration, and metabolic quotient in intensively tilled plots suggested that high tillage favoured soil aggregate disruption and C accessibility. This was also confirmed by higher values of dehydrogenase activity/total organic C in those plots. Intensive tillage caused a higher soil aeration and organic substrates accessibility to microflora, thus undoing the fertility benefits provided by the high compost input. However, also a low compost input coupled to reduced tillage seemed to accomplish soil sustainability needs.  相似文献   

16.
The effects of municipal food waste compost addition and mineral fertilization on selected soil microbiological activities were investigated during 3 years of reiterated treatments on two Mediterranean agricultural soils with different organic carbon content. Compost at 15, 30 and 45 t ha−1 (dry matter), mineral (NPK) fertilizers and combined fertilizers with 15 t ha−1 of compost plus two reduced doses of mineral N were applied to both soils. At both sites, organic amendment increased soil respiration, fluorescein diacetate hydrolysis, phosphatase and arylsulphatase activities. The differences in soil microbial activities among treatments, found after 3 years of repeated treatments, were attributable to the variations of soil organic C content and to the impact of soil tillage. Our results show that, in Mediterranean intensively cultivated agroecosystems, annual organic amendments improve the microbial activity of soil and produce cumulative effects, suggesting the usefulness of repeated high-rate compost applications.  相似文献   

17.
Biogas residues contain microbial biomass, which contributes to the formation of soil organic matter. Whether the potential of biogas residues to increase soil organic matter can be enhanced by co‐application with compost, biochar or manure is unknown, however. The aim of this paper is to evaluate the effects of co‐amendment on the mineralization of biogas residues, carbon dioxide emissions and the carbon flow within the microbial food web. We determined the fate of 13C‐labelled microbial biomass present in biogas residues applied together with compost, biochar and manure to soil, by analysing CO2 and biomarker phospholipid fatty acids. Although the rate of mineralization constant of the slowly degrading carbon pool was not affected by co‐amendments, co‐amendment with manure resulted in a larger rate of mineralization constant of the readily degrading carbon pool of biogas residues. The incorporation of carbon was mainly to Gram‐negative biomass and was the smallest with manure co‐amendment, which indicated differences in bioavailability of the carbon source.  相似文献   

18.
Unsuitable agricultural practices together with adverse environmental conditions have led to degradation of soil in many Mediterranean areas. One method for recovering degraded soils in semiarid regions, is to add organic matter in order to improve soil characteristics, thereby enhancing biogeochemical nutrient cycles. In this study, the effect of adding the organic fraction of urban wastes (both fresh and composted) on different carbon fractions and on microbiological and biochemical parameters (microbial biomass C, basal respiration and different enzymatic activities) of a degraded soil of SE Spain has been assessed in a 2 year experiment. Three months after the addition of the organic material, spontaneous plant growth occurred and the plant cover lasted until the end of the experiment. Organic soil amendment initially increased the levels of soil organic matter, microbial biomass, basal respiration and some enzyme activities related to the C and N cycles These values decreased but always remained higher than those of the unamended soil. The results indicate that the addition of urban organic waste is beneficial for recovering degraded soils, the microbial activity of which clearly increases with amendment. The incorporation of compost seemed to have a greater positive effect on the soil characteristics studied than the incorporation of fresh organic matter.  相似文献   

19.
Cocomposting of poultry litter with municipal solid waste compost (MSW) was evaluated as a means to stabilize nitrogen and phosphorus in poultry litter and to produce a stable organic soil amendment. Four passively aerated compost piles were established by mixing fixed weight ratios of MSW and composted poultry litter (21:1, 6:1, 3:1, 1:1); moisture was adjusted to 50 percent by weight at pile establishment. These ratios represented a range of initial C:N (26-12) and C:P (150-50) ratios. Composting process parameters monitored over eight months included temperature, oxygen and moisture contents, pH, electrical conductivity, C:N:P ratios, microbial respiration and diversity. Initial feedstock ratios had no significant effect on temperature in the thermophilic phase of composting. After one year of composting, microbial respiration in 21:1 and 6:1 mixtures was high relative to 3:1 and 1:1 mixtures suggesting slow maturation in piles with high MSW content. Salmonella sp. and coliform organisms were detectable for up to 47 days. Results suggest that MSW has potential as a carbon feedstock for poultry litter composting when used in moderate amounts.  相似文献   

20.
One of the key issues to increase soil productivity in the Sahel is to ensure water infiltration and storage in the soil. We hypothesised that reducing tillage from annual to biennial ploughing and the use of organic matter, like compost, would better sustain soil hydraulic properties. The study had the objective to propose sustainable soil fertility management techniques in the cotton–maize cropping systems. The effects of reduced tillage (RT) and annual ploughing (AP) combined with compost application (Co) on soil infiltration parameters were assessed on two soil types. Topsoil mean saturated hydraulic conductivities (Ks) were between 9 and 48 mm h−1 in the Luvisol, while in the Lixisol they were between 18 and 275 mm h−1. In the two soil types compost additions with reduced tillage or with annual ploughing had the largest effect on Ks. Soil hydraulic behaviour was in reasonable agreement with soil pore size distribution (mean values varied from 19.5 to 237 μm) modified by tillage frequency and organo-mineral fertilization. Already the first 3 years of this study showed that use of organic matter, improved soil infiltration characteristics when annual ploughing was used. Also biennial ploughing showed promising results and may be a useful strategy for smallholders to manage these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号