首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chickpea (Cicer arietinum L.) is one of the most important pulse crops in the world, cultivated on a wide range of environments. In Mediterranean regions, it is traditionally grown as a spring-sown rainfed crop, very dependent on rainfall. In this situation, supplemental irrigation can improve significantly the crop yield. The objective of this study was to evaluate the improvement on chickpea crop yield and water productivity (WP) of five chickpea varieties with supplemental irrigation, in the Mediterranean conditions, with both dry and wet years. Field tests were carried out over two cropping seasons, in Southern Portugal, using three kabuli-type and two desi-type chickpea varieties and four irrigation treatments, corresponding to 100, 50, 25 % of crop irrigation requirements (IR) and rainfed. The results show that all chickpea varieties responded to supplemental irrigation with the increase in grain and biomass yield. However, the magnitude of individual chickpea response depends on the year and the genotype. In 2009, a dry year, the highest WP values were attained at the 50 % IR treatment, whereas in 2010, a wet year, it was the rainfed treatment that showed the highest WP values. The Elixir variety showed the best grain yields and water productivity.  相似文献   

2.
The West Asia and North Africa (WANA) region, with a Mediterranean climate type, has an increasing deficit in cereal production, especially bread wheat. Rainfed cropping in the highlands of this region coincides with the severely cold winter with mostly, snow from November to April. Cereal yields, are low and variable mainly as a result of inadequate and erratic seasonal rainfall and associated management factors, such as late sowing (or late crop emergence). In an area where water is limited, small amounts of supplemental irrigation (SI) water can make up for the deficits in seasonal rain and produce satisfactory and sustainable yields. This field study (1999–2002) on a deep clay silty soil in north west of Iran was conducted with four SI levels (rainfed, 1/3, 2/3 and full irrigation requirements) combined with different N rates (0, 30, 60, 90 and 120 kg ha−1) with one wheat variety (Sabalan). Yields of rainfed wheat varied with seasonal rainfall and its distribution. A delay in the crop emergence from October (SI treatment) to November (rainfed) consistently reduced yields. With irrigation, crop responses to nitrogen were generally significant up to 60 kg N ha−1. An addition of only limited irrigation (1/3 of full irrigation) significantly increased yields and maximized water use efficiency (WUE). Use efficiency for water and N was greatly increased by SI. Under deficit irrigation, maximum WUE would be achieved when 60 kg N ha−1 is combined with 1/3 of full SI. Early crop germination is essential to ensure adequate crop stand before the winter frost and to achieve high yield. Early emergence can be achieved by applying a small amount (40–50 mm) of SI after sowing. Thus, when limited SI is combined with appropriate management, wheat production can be substantially and consistently increased in this highland semi-arid zone.  相似文献   

3.
本文研究了一个由简单的产生逐日降水的方法用在水量平衡方程中确定作物的灌溉量和灌溉时间的模拟模型。该降水模型用月平均的气象资料产生逐日降水,并且在水量平衡模型中将蒸发蒸腾量值进行了随机化处理。对陕西省的扶风县和大荔县分别进行了23年和29年的冬小麦和夏玉米的灌溉模拟。利用模拟结果分析了灌水量和最可能产生缺水的时间。此方法可用于半干旱地区在各种降水情况下的灌溉模拟。  相似文献   

4.
In a vegetative crop like sugar cane, soil water stress will invariably result in reduced growth and yield. Under inadequate rainfall conditions such a crop needs supplemental irrigation to maximize the yield.The present article discusses the relationship between sugar cane yield and rainfall/irrigation requirements. Special attention is given to the potential sugar cane yields and benefit/cost ratios in the Malaiman area in Thailand, under four water conveyance systems (from low- to high-density irrigation and drainage network) and under optimized rainfed cultivation.A linear relationship between cane yield and water use is applied for the prediction of potential crop yields for the various water conveyance systems. These yields are compared with the actual cane production in pilot areas with different irrigation infrastructure, which has been monitored over a period of years. Actual yields fall short of predicted in all cases. This is mainly be attributed to the low cane prices, resulting in sub-optimal cultivation practices by the farmers.Prediction of potential sugar cane yields for local circumstances is quite possible. At present sugar cane price levels, development of a low-density irrigation infrastructure seems to be the most economical solution.  相似文献   

5.
The Central Anatolian Plateau of Turkey is a typical cool highland rainfed wheat area with an annual rainfall of 300–500 mm. Due to suboptimal seasonal rainfall amounts and distribution, wheat yields in the region are low and fluctuate substantially over seasons. Delayed sowing due to late rainfall affects early crop establishment before winter frost and causes substantial reduction in yield. A 4-year field study (1998/1999 to 2001/2002) was carried out at Ankara Research Institute of Rural Services to assess the impact of early sowing with supplemental irrigation (SI) and management options during other dry spells on the productivity of a bread wheat cultivar, “Bezostia”. Treatments included early sowing with 50 mm irrigation and normal sowing with no irrigation as main plots. Four spring (SI) levels occupied the sub-plots. These are rainfed (no-irrigation), full irrigation to sature crop water requirements and two deficit irrigation levels of 1/3 and 2/3 at the full irrigation treatments.Results showed that early establishment of the crop, using 50 mm of irrigation water at sowing, increased grain yield by over 65% and adding about 2.0 t/ha to the average rainfed yield of 3.2 t/ha. Early sowing with SI allowed early crop emergence and development of good stand before being subjected to the winter frost. As a result, the crop used rainwater more efficiently. Additional supplemental irrigation in the spring also increased yield significantly. Grain yields of 5120, 5170 and 5350 kg/ha were obtained by applying 1/3, 2/3 and full SI, respectively. The mean productivity of irrigation water given at sowing was 3.70 kg/m3 with maximum value of 4.5 kg/m3. Water productivity of 1/3, 2/3 and full SI were 2.39, 1.46 and 1.27 kg/m3, respectively, compared to rainwater productivity of 0.96 kg/m3.  相似文献   

6.
Maize (Zea mays L.), the dominant and staple food crop in Southern and Eastern Africa, is preferred to the drought-tolerant sorghum and pearl millet even in semi-arid areas. In semi-arid areas production of maize is constrained by droughts and poor rainfall distribution. The best way to grow crops in these areas is through irrigation, but limited areal extent, increasing water scarcity, and prohibitive development costs limit the feasibility of irrigation. Therefore, there is need for a policy shift towards other viable options. This paper presents daily rainfall analysis from Rushinga district, a semi-arid location in Northern Zimbabwe. The purpose of the rainfall analysis was to assess opportunities and limitations for rainfed maize production using 25 years of data. Data was analysed using a variety of statistical methods that include trend analysis, t-test for independent samples, rank-based frequency analysis, Spearman's correlation coefficient and Mann-Whitney's U test. The results showed no evidence of change in rainfall pattern. The mean seasonal rainfall was 631 mm with a standard deviation (SD) of 175 mm. December, January and February consistently remained the major rainfall months. The results depicted high inter-annual variability for both annual and seasonal rainfall totals, a high incidence of droughts ≥3 out of every 10 years and ≥1 wet year in 10 years. Using the planting criteria recommended in Zimbabwe, most of the plantings would occur from the third decade of November with the mode being the first decade of December. This predisposes the rainfall to high evaporation and runoff losses especially in December when the crop is still in its initial stage of growth. On average 5 to more than 20 days dry spells occupy 56% of the rainy season. Seasonal rainfall exhibited negative correlation (P < 0.001; R = −0.746) with cumulative dry spell length, and wet years were free from dry spells exceeding 20 days. The most common dry spells (6-10 days), are in the range in which irrigated crops survive on available soil water. Therefore, they can be mitigated by in situ rainwater harvesting (RWH) and water conservation. The potential evapotranspiration of a 140-day maize crop was estimated to be 540 mm. Consequently, short season maize cultivars that mature in less than 140 days could be grown successfully in this area in all but drought years. However, sustainable maize production can only be achieved with careful management of the soil as a medium for storing water, which is essential for buffering against dry spells. To this end soil restorative farming systems are recommended such as conservation farming, in situ RWH techniques for dry spell mitigation and a cropping system that includes drought-tolerant cereal crops as for example sorghum and pearl millet, and perennial carbohydrate sources as for example cassava to provide stable crop yields.  相似文献   

7.
In semi-arid areas, crop growth is greatly limited by water. Amount of available water in soil can be increased by surface mulching and other soil management practices. Field experiments were conducted in 2005 and 2006 at Gaolan, Gansu, China, to determine the influence of ridge and furrow rainfall harvesting system (RFRHS), surface mulching and supplementary irrigation (SI) in various combinations on rainwater harvesting, amount of moisture in soil, water use efficiency (WUE), biomass yield of sweet sorghum (Sorghum bicolour L.) and seed yield of maize (Zea mays L.). In conventional fields without RFRHS, gravel-sand mulching produced higher biomass yield than plastic-mulching or straw-mulching. In plastic-mulched fields, an increasing amount of supplemental irrigation was needed to improve crop yield. There was no effect of RFRHS without plastic-covered ridge on rainwater harvesting when natural precipitation was less than 5 mm per event. This was due to little runoff of rainwater from frequent low precipitation showers, and most of the harvested rainwater gathered at the soil surface is lost to evaporation. In the RFRHS, crop yield and WUE were higher with plastic-covered ridges than bare ridges, and also higher with gravel-sand-mulched furrows than bare furrows in most cases, or straw-mulched furrows in some cases. This was most likely due to decreased evaporation with plastic or gravel-sand mulch. In the RFRHS with plastic-covered ridges and gravel-sand-mulched furrows, application of 30 mm supplemental irrigation produced the highest yield and WUE for sweet sorghum and maize in most cases. In conclusion, the findings suggested the integrated use of RFRHS, mulching and supplementary irrigation to improve rainwater availability for high sustainable crop yield. However, the high additional costs of supplemental irrigation and construction of RFRHS for rainwater harvesting need to be considered before using these practices on a commercial scale.  相似文献   

8.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   

9.
黔中地区玉米需水量的计算与灌溉预报   总被引:4,自引:0,他引:4  
作物需水量的计算和灌溉预报是农田水分管理的主要参数,实时灌溉预报是制定动态灌溉用水计划的基础,对区域节水,增加作物产量和提高经济效益起着重要作用。以黔中地区全生育期玉米为研究对象,结合玉米不同生育阶段的各项参数,进行作物需水量的计算和灌溉预报。  相似文献   

10.
In arid and semi-arid regions, effluent from sub-surface drainage systems is often saline and during the dry season its disposal poses an environmental problem. A field experiment was conducted from 1989 to 1992 using saline drainage water (EC=10.5–15.0 dS/m) together with fresh canal water (EC=0.4 dS/m) for irrigation during the dry winter season. The aim was to find if crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crops were a winter crop, wheat, and pearl-millet and sorghum, the rainy season crops, grown on a sandy loam soil. All crops were given a pre-plant irrigation with fresh canal water. Subsequently, the wheat crop was irrigated four times with different sequences of saline drainage water and canal water. The rainy season crops received no further irrigation as they were rainfed. Taking the wheat yield obtained with fresh canal water as the potential value (100%), the mean relative yield of wheat irrigated with only saline drainage water was 74%. Substitution of canal water at first post-plant irrigation and applying thereafter only saline drainage water, increased the yield to 84%. Cyclic irrigations with canal and drainage water in different treatments resulted in yields of 88% to 94% of the potential. Pearl-millet and sorghum yields decreased significantly where 3 or 4 post-plant irrigations were applied with saline drainage water to previous wheat crop, but cyclic irrigations did not cause yield reduction. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the sub-surface drainage system during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water in conjunction with fresh canal water without undue yield reduction and soil degradation. This will save the scarce canal water, reduce the drainage water disposal needs and associated environmental problems.  相似文献   

11.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

12.
In southwestern Ontario, rain-fed crop production frequently fails to achieve its yield potential because of growing-season droughts and/or uneven rainfall distribution. The objective of this study was to determine if the Decision Support System for Agrotechnology Transfer (DSSAT) v4.5 model could adequately simulate corn and soybean yields, near-surface soil water contents, and cumulative nitrate-N losses associated with regular free tile drainage (TD) and controlled tile drainage with optional subsurface irrigation (CDS). The simulations were compared to observations collected between 2000 and 2004 from both TD and CDS field experiments on a Perth clay loam soil at the Essex Region Conservation Authority demonstration farm, Holiday Beach, Ontario, Canada. There was good model-data agreement for crop yields, near-surface (0-30 cm) soil water content and cumulative annual tile nitrate-N loss in both the calibration and validation years. For both TD and CDS, the CENTURY soil C/N model in DSSAT simulated water content and cumulative tile nitrate-N loss with normalized root mean square error (n-RMSE) values ranging from 9.9 to 14.8% and 17.8 to 25.2%, respectively. The CERES-Maize and CROPGRO-Soybean crop system models in the DSSAT simulated corn and soybean yields with n-RMSE values ranging from 4.3 to 14.0%. It was concluded that the DSSAT v4.5 model can be a useful tool for simulating near-surface soil water content, cumulative tile nitrate-N losses, and corn and soybean yields associated with CDS and TD water management systems.  相似文献   

13.
Although rainfall in the United States Mid-South is sufficient to produce corn (Zea mays L.) without irrigation in most years, timely irrigation has been shown to increase yields. The recent interest in ethanol fuels is expected to lead to increases in US corn production, and subsurface drip irrigation (SDI) is one possible way to increase application efficiency and thereby reduce water use. The objective of this study was to determine the response of SDI-irrigated corn produced in the US Mid-South. Field studies were conducted at the University of Arkansas Northeast Research and Extension Center at Keiser during the 2002-2004 growing seasons. The soil was mixed, with areas of fine sandy loam, loamy sand, and silty clay. SDI tubing was placed under every row at a depth of approximately 30 cm. Three irrigation levels were compared, with irrigation replacing 100% and 60% of estimated daily water use and no irrigations. The split plot treatment was hybrid, with three hybrids of different relative maturities. Although the 3-year means indicated significantly lower yields for a nonirrigated treatment, no significant differences were observed among the treatments in 2003 or 2004. A large difference was observed in 2002, the year with the least rainfall during the study period, but no difference was detected between the two irrigated treatments in any year. The treatment with the lower water application had the higher irrigation water use efficiency. Although the results of this study suggested that replacing 60% of the estimated daily evapotranspiration with SDI is sufficient for maximum corn yields, additional observations will be needed to determine whether corn production with SDI is feasible in the region and to develop recommendations for farmers choosing to adopt the method. Improved weather forecasting and crop coefficient functions developed specifically for the region should also contribute to more efficient irrigation management.  相似文献   

14.
A generic approach is proposed for the development and testing of crop management systems in contrasting situations of water availability. Ecophysiological knowledge, expertise, regional references and simulation models are combined to devise management strategies adapted to production targets and constraints. The next stage consists of converting these crop management strategies into logical and consistent sets of decision rules. Each rule describes the reasoning which is used to apply a technical decision by taking account of observed or simulated environmental conditions or predicted agronomic risks.

This approach was applied to design crop management systems for grain sorghum (Sorghum bicolor L. Moench.) in south-western France. For spring-sown crops, management (sowing date, plant density, varietal choice, N fertilizer rate and timing) was based on water availability, both for economic and environmental reasons. Specific sets of decision rules were written for irrigated and rainfed conditions. The establishment of rules was based on agronomic principles (e.g. for plant density) or on the application of a simulation model (e.g. for sowing date, variety). N fertilization and irrigation were applied using combined N and water dynamic models.

A novel methodology combining crop diagnosis, analytical trials and crop simulation was developed to evaluate the management systems. An irrigated and a rainfed rule-based management system were compared near Toulouse (S.W. France) from 1995 to 2002. The profitability of rainfed low-input management was confirmed for sorghum in spite of high yields under irrigation (up to 10 t ha−1). The adaptation of sorghum management in rainfed conditions was mainly achieved through early maturing cultivars and by reducing N applications by 65%.  相似文献   


15.
A detailed district and agro-ecoregional level study comprising the 604 districts of India was undertaken to (i) identify dominant rainfed districts for major rainfed crops, (ii) make a crop-specific assessment of the surplus runoff water available for water harvesting and the irrigable area, (iii) estimate the efficiency of regional rain water use and incremental production due to supplementary irrigation for different crops, and (iv) conduct a preliminary economic analysis of water harvesting/supplemental irrigation to realize the potential of rainfed agriculture. A climatic water balance analysis of 225 dominant rainfed districts provided information on the possible surplus runoff during the year and the cropping season. On a potential (excluding very arid and wet areas) rainfed cropped area of 28.5 million ha, a surplus rainfall of 114 billion m3 (Bm3) was available for harvesting. A part of this amount of water is adequate to provide one turn of supplementary irrigation of 100 mm depth to 20.65 Mha during drought years and 25.08 Mha during normal years. Water used in supplemental irrigation had the highest marginal productivity and increase in rainfed production above 12% was achievable even under traditional practices. Under improved management, an average increase of 50% in total production can be achieved with a single supplemental irrigation. Water harvesting and supplemental irrigation are economically viable at the national level. Net benefits improved by about threefold for rice, fourfold for pulses and sixfold for oilseeds. Droughts have very mild impacts on productivity when farmers are equipped with supplemental irrigation.  相似文献   

16.
Field experiments were performed at the HsuehChia Experimental Station from 1993 to 2001 to calculate the reference and actual crop evapotranspiration, derived the crop coefficient, and collected requirements input data for the CROPWAT irrigation management model to estimate the irrigation water requirements of paddy and upland crops at the ChiaNan Irrigation Association, Taiwan. For corn, the estimated crop coefficients were 0.40, 0.78, 0.89 and 0.71 in the initial, crop development, mid-season and late-season stages, respectively. Meanwhile, the estimated crop coefficients for sorghum were 0.44, 0.71, 0.87 and 0.62 in the four stages, respectively. Finally, for soybean, the estimated crop coefficients were 0.45, 0.89, 0.92 and 0.58 in the four stages, respectively. With implementation of REF-ET model and FAO 56 Penman–Monteith method, the annual reference evapotranspiration was 1268 mm for ChiaNan Irrigation Association.In the paddy fields, the irrigation water requirements and deep percolation are 962 and 295 mm, respectively, for the first rice crop, and 1114 and 296 mm for the second rice crop. Regarding the upland crops, the irrigation water requirements for spring and autumn corn are 358 and 273 mm, respectively, compared to 332 and 366 mm for sorghum, and 350 and 264 mm for soybean. For the irrigated scheme with single and double rice cropping patterns in the ChiaNan Irrigation Association, the CROPWAT model simulated results indicate that the annual crop water demands are 507 and 1019 mm, respectively, and the monthly water requirements peaked in October at 126 mm and in January at 192 mm, respectively.  相似文献   

17.
Semi-arid agro-ecosystems are characterized by erratic rainfall and high evaporation rates leading to unreliable agricultural production. Total seasonal rainfall may be enough to sustain crop production, but its distribution and occurrence of intra-season dry spells (ISDS) and off-season dry spells (ODS) affect crop production. Rainwater harvesting (RWH) and management, especially on-farm storage ponds for supplemental irrigation offers an opportunity to mitigate the recurrent dry spells. Farm ponds are small runoff storage structures of capacities ranging from 30 to 100 m3 used mainly for supplemental irrigation of kitchen gardens, and sometimes for domestic and livestock water supply. The main objective of the study was to evaluate the hydrological and economic performance of farm ponds with the view of assessing their contributions to water and food security in semi-arid agro-systems of Kenya. Agro-hydrological evaluation of on-farm runoff storage systems entailed field survey, monitoring of water losses, analysis of rainy seasons and dry spell occurrence, soil moisture and water balance, estimation of supplemental irrigation requirement (SIR) and farm-level cost-benefit analysis of cabbage production using low-head drip irrigation system. Significant water losses through seepage and evaporation, which accounted on average for 30–50% of the stored runoff, is one of the factors that affect the adoption and up-scaling of on-farm water storage systems. Frequency analysis of rainfall revealed that there is 80% probability of occurrence of dry spells exceeding 10 and 12 days during the long rains and short rains, respectively. The occurrence of off-season (after rainfall cessation) dry spells was more pronounced than intra-seasonal (within the rainy season) dry spells. The length of intra-seasonal (10–15 days) was less than off-season dry spells (20–30 days). The occurrence of off-season dry spells coincides with the critical crop growth stage, in particular flowering and yield formation stages. A 50 m3 farm pond with a drip system irrigation system was found adequate to meet supplemental irrigation requirement for a kitchen garden of 300–600 m2 planted with a 90 days growing period cabbages. The cost-benefit analysis showed that farm ponds are feasible solutions to persistent crop failures in semi-arid areas which dominant most countries in Sub-Saharan Africa (SSA).  相似文献   

18.
Many farmers in West Central Nebraska have limited irrigation water supplies, and need to produce crops with less water. This study evaluated the impact of four water management strategies on grain yield of surface-irrigated corn (Zea mays L.) at North Platte, Nebraska. Treatments included: (1) no irrigation (DRYLAND), (2) one irrigation prior to tassel formation (EARLY), (3) one irrigation during the silk stage (LATE), and (4) irrigation following farmer’s practices (FARMER). The study included three wet years (1992, 1993, and 1996) and 2 years with average annual rainfall for the area (1994 and 1995). Significant yield differences among treatments, and a yield response to irrigation, were only observed during the 2 years with average rainfall. During all years, the FARMER treatment was over-irrigated and resulted in considerable water losses by runoff and deep percolation. Grain yield response to irrigation during the three wet years was insignificant among the treatments, but significant during the dry years. The results of this study suggest that inducing stress is not a good strategy for increasing crop water productivity (yield per unit ETd) for corn and point out the need to minimize irrigation water losses and improve irrigation scheduling.  相似文献   

19.
Chickpea is one of the major legume crops grown in the West Asia and North Africa (WANA) region. It has considerable importance as a food, feed and fodder. Traditionally, it is sown in spring as a rainfed crop in the region, which has highly variable and often insufficient rainfall. It is, therefore, largely raised on residual moisture, which results in low and variable yields and discourages farmers from investing inputs in its production. In the early 1990s, a winter-sown chickpea technology was developed that outweighs spring-sown chickpea in terms of productivity, water use efficiency and other traits. Limited supplemental irrigation can, however, play a major role in boosting and stabilizing the productivity of both spring-sown and winter-sown chickpea. Therefore, we investigated the effect of supplemental irrigation and sowing date on yield and water use efficiency in winter-sown chickpea.An experiment was carried out over four cropping seasons (1997–2001) at ICARDA’s main station at Tel Hadya, Aleppo, northern Syria (mean annual rainfall 330 mm). A cold-tolerant chickpea cultivar with improved resistance to ascochyta blight (ILC 3279, released as Ghab 2 in Syria) was grown in rotation with wheat. The experiment included three sowing dates (late November, mid-January, and late February) and four levels of supplemental irrigation (SI): full SI, 2/3 SI, 1/3 SI, and no SI, i.e. rainfed. The plots were replicated three times in a split-plot design, with date of sowing being the main plot treatment. Soil water content was monitored at approximately at 7–14-day intervals using a neutron probe. Crop evapotranspiration was determined for each subplot during each time interval, from sowing to harvest, using the soil-water balance equation. Water use efficiency was determined as the ratio of crop yield per unit area to seasonal evapotranspiration.The results showed that chickpea yield per unit area increases with both earlier sowing and increased SI. However, water use efficiency under supplemental irrigation decreases with earlier sowing, due to the relatively large increase that occurs in the amount of evapotranspiration at early sowing dates. The study’s results indicated that a 2/3 SI level gives the optimum water use efficiency for chickpea under supplemental irrigation. Under rainfed conditions, however, it was found that sowing chickpea around mid-January resulted in the highest WUE. The analysis also proposed a function, based on regression, which relates winter-sown chickpea yield to water use and which is applicable under both supplemental and rainfed conditions.  相似文献   

20.
In rainfed Mediterranean areas, early sowings which lead to early growth and maturity to escape terminal heat and drought usually give higher grain yield than late sowings in years when rains come early. We test the hypothesis that early sowing coupled with a small amount of irrigation to ensure earlier emergence increases grain yield significantly, while improving irrigation water productivity. Replicated field experiments were conducted for 4 years in the semi-arid central Bekaa Valley of Lebanon. Barley was sown early, and half of the plots were irrigated with 25-30 mm of water immediately after sowing (EI). Half of the plots also received irrigation around heading stage (LI). Besides yields, other agronomic data were collected throughout crop growth, and the supplemental irrigation water use efficiency (WUESI) was calculated. Our results confirm the hypothesis that in Mediterranean areas early sowing followed immediately with a small amount of irrigation increases barley grain yield significantly. Farmers in the region should seriously consider practicing this technique as it produces a higher WUESI than irrigation at the heading stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号