首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》1995,43(1):19-29
Lupin, field pea, lentil, chickpea, canola, linseed, and barley were sown at different times (late April-early July) to study their effects on subsequent wheat production on a red earth at Wagga Wagga, New South Wales. The cultivars of field pea (Pisum sativum) included Dunn, Derrimut, Maitland and Dinkum; narrow-leaf lupin (Lupinus angustifolius) cultivars were Danja, Geebung and Gungurru, and either the L. angustifolius line 75A/330 (1989–1990) or the broad-leaf lupin L. albus cv. Ultra (1991–1992). Only one cultivar of the other crops was grown in any year and after 1989 lentil (Lens culinaris cv. Aldinga) was replaced by chickpea (Cicer arietinum cv. Amethyst). The canola (cv. Shiralee (1989–1991), cv. Barossa (1992)) and linseed (cv. Glenelg) rotations received annual applications of 40–50 kg N/ha as urea.Compared to barley and the oilseeds, grain legumes increased soil mineral N supply to the following wheat crop. Over 4 years the mean wheat grain yield response to a broad-leaf crop, relative to barley, was 115% for lupin, 84% for field pea, 88% for linseed and 86% for canola. However, the effects of the various crops on subsequent wheat grain yields and grain protein varied markedly with season. The main advantage of lupin over field pea occurred in years when disease reduced growth of field pea crops. In high rainfall years, wheat yields following lentil and chickpea were lower than those following lupin. The narrow-leaf cultivars of lupin promoted greater wheat yields than either the reduced branching line 75A/330 or the broad-leaf albus cultivar Ultra. Delayed sowing of lupin reduced yield and grain protein of wheat, except when low rainfall curtailed growth of either crop in the rotation. There was little effect of field pea sowing date on wheat grain yield but sowing in late June combined with a dry spring, reduced mineral N supply and grain protein. Late sowing of oilseeds had no consistent effect on wheat grain yield but increased grain protein in most years. Late sowing of barley typically increased wheat grain yield but had little effect on grain protein. The effects of sowing time were mainly attributed to effects on soil N supply and for barley on disease incidence in the subsequent wheat.  相似文献   

2.
《Field Crops Research》2001,70(2):139-151
The effects of various crop rotations on the biomass and yield of barley (Hordeum vulgare L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.) grown under Mediterranean conditions were studied during three growing seasons in the semiarid Spanish Central Plateau. The treatments comprised six crop sequences: barley monoculture, fallow–barley (currently used in the area), faba bean–barley, pea–barley, fallow–barley–faba bean, and fallow–barley–pea. The fallow was of 16-month duration. The site is representative of cultivated areas of the Plateau, and the soil has a loam texture. Results concentrate on barley as the main crop. Season distribution of rainfall restricted the effectiveness of the management practices and in consequence there were few differences between rotations. Barley had greater biomass and yield after fallow than after other crops but significant differences were dependent on year. Legumes, an alternative to fallow, increased land use, permitted alternative weed control measures, and reduced the need for fertiliser. The intensification of the fallow–barley cropping system is best achieved by reducing the frequency of fallow and including other crops of relatively small biomass production, thereby minimising the impact on yield of the succeeding barley crop.  相似文献   

3.
Development of wheat cultivars that achieve high yields despite the short growing season is essential for increasing wheat production in southwestern Japan. The objectives of this study were to assess the genetic progress in grain yield and to clarify yield-attributing traits of high-yielding wheat lines in southwestern Japan. We conducted field experiments for two growing seasons (2012–2013 and 2013–2014) using three commercial wheat cultivars (Shiroganekomugi, Chikugoizumi, and Iwainodaichi) and four high-yielding wheat lines including Hakei W1380 developed in southwestern Japan. In an ancillary field experiment, we compared a commercial cultivar, Shiroganekomugi, and a high-yielding line, Hakei W1380, in the 2014–2015 season. Across the two seasons, grain yield of high-yielding lines was generally higher than commercial cultivars. Hakei W1380 achieved the highest grain yield across the two seasons, and successfully produced more than 900 g m?2 in the 2013–2014 season. Correlation analysis showed that recent yield progress of wheat lines in southwestern Japan was derived from enhanced biomass production and grain number m?2. Larger numbers of grains m?2 in high-yielding lines than in commercial cultivars were associated with higher crop growth rate at the pre-anthesis stage, and therefore higher spike dry weight m?2 at anthesis. Genotypic differences in crop growth rate from jointing to anthesis resulted mainly from differences in leaf area index. These results indicate that further improvements in grain yield in southwestern Japan could be achieved by increasing the amount of radiation intercepted at the pre-anthesis stage and grain number m?2.  相似文献   

4.
Triticale often out-yields wheat in both favourable and unfavourable growing conditions. Observed traits suggested for the higher yields in triticale include greater early vigour, a longer spike formation phase with same duration to flowering, reduced tillering, increased remobilization of carbohydrates to the grain, early vigorous root growth and higher transpiration use efficiency. To quantify the impact of these traits systematically across seasons and contrasting rainfall regions and soil types, these triticale traits were introduced into a wheat model (APSIM-Nwheat). The impact of each individual trait and their full combination was analysed in a simulation experiment for three Mediterranean growing environments, two contrasting soil types and long-term historical weather data. The simulated impact of these traits was compared with measured impacts from a range of field experiments across several environments. Simulated responses of various crop characteristics including yield, were in general similar to responses observed in wheat-triticale comparison field experiments across a large range of growing conditions. The simulation analysis indicated that the yield response to the incorporation of the triticale traits into wheat was positive, in both low and high yielding growing conditions, similar to measured differences, but the simulated benefit was on average lower than the range observed in data of triticale and wheat. This suggests that other traits might also be involved in higher-yielding triticale, or the magnitude of some of the traits may be underestimated in field experiments due to ‘trait by environment’ interactions. The simulation results suggest the highest yield benefit can be achieved from increasing transpiration use efficiency in wheat, but early vigour, remobilization of stem carbohydrates and early root growth also contribute positively to a yield increase in the different growing environments. The yield benefits from the triticale traits increased in the future climate change scenario in particular on soils with high water-holding capacity from contributions of increased early vigour, remobilization of stem carbohydrates and transpiration use efficiency, and remained stable on the lighter soils.  相似文献   

5.
Weeds are a major constraint for organic crop production. Previous research has found that cover crops in reduced tillage systems can provide weed interference, subsequently reducing inputs and improving crop yield. However, questions remain about effects of cover crop species identity and cover crop biomass on weed suppression and crop yield. This four-year study investigated how winter cover crops grown alone or in mixture influenced weed presence and crop yield in a reduced tillage organic vegetable system. Treatments were barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), mixed barley + crimson clover, and a no-cover crop control. Plots were flail-mowed and strip-tilled prior to planting main crops (2011 and 2012: broccoli Brassica oleracea L.; 2013 and 2014: crookneck squash Cucurbita pepo L.). We measured density, diversity, and community composition of weeds and viable weed seeds, changes in weed percent cover within growing seasons, and crop yield. We found that the presence of barley, crimson clover, or barley + crimson clover reduced weed density by 50% relative to the control. Cover crop biomass negatively influenced weed density and weed seed diversity, and positively influenced squash yield. Weed percent cover within growing seasons did not respond differentially to cover crop treatment. Cover crop treatment and cover crop biomass had no influence on weed or weed seed community composition. These results suggest that reduced tillage winter cover crops in mixture or monoculture can similarly suppress weeds and improve yield, primarily due to biomass effects.  相似文献   

6.
Improving drought tolerance has always been an important objective in many crop improvement programs and is becoming more important as one way of adapting crops to climate changes. However, due to its complexity, the genetic mechanisms underlying the expression of drought tolerance in plants are poorly understood and this trait is difficult to characterize and quantify. This study assessed the importance of the wild progenitor of cultivated barley, Hordeum spontaneum C. Koch, in contributing developmental and yield-related traits associated with drought tolerance and therefore its usefulness in breeding for improved adaptation to drought stress conditions. Fifty-seven fixed barley lines derived from crosses with two H. spontaneum lines (41-1 and 41-5) were evaluated in Mediterranean low rainfall environments with 10 improved varieties and three landraces for grain yield, developmental and agronomic traits. The study was conducted for three years (2004–2006) in a total of nine environments (location–year combinations), eight in Syria and one in Jordan, which were eventually reduced to seven due to a large error variance in two of them. There was significant genetic variation among the genotypes for most of the traits measured, as well as differential responses of genotypes across environments. Traits such as peduncle length, peduncle extrusion and plant height were positively correlated with grain yield in the dry environments. Differences in phenology were small and not significantly correlated with differences in grain yield under stress. Performances at the three highest yielding environments were much more closely correlated than those at the four stress environments. The GGE biplot analysis allowed identification of genotypes consistently best adapted to the lowest yielding environments and confirmed the existence of unique environments for identifying better adapted genotypes in the low rainfall environments of Syria. The top yielding lines in the driest of the seven environments derived mostly from crosses with H. spontaneum 41-1, while most of the improved varieties showed a positive genotype by environment (GE) interaction with the highest yielding environments. The results of the field experiments indicated that there was variation for grain yield under drought stress among barley genotypes, and that some of the lines derived from H. spontaneum had consistently superior specific adaptation to the range of severe stress conditions used in this study. The usefulness of H. spontaneum in breeding programs for stress conditions is likely to increase in view of the predicted increase in the occurrence of high temperatures and droughts.  相似文献   

7.
《Field Crops Research》1998,59(3):163-173
The value of germplasm-specific and general indexes of selection based on morphophysiological traits was assessed as an alternative to conventional yield-based selection for grain yield improvement of durum wheat in a semi-arid Mediterranean region. General indexes were developed from the evaluation of a collection of 503 landrace accessions. Specific indexes were also defined for each of the durum wheat types mediterraneum typicum and syriacum as well as for a third germplasm group including mostly Mediterranean material pertaining to neither of these types. Indexes included two or three traits among the following: displacement from optimal heading date (difference in absolute value of days from the mean heading date of three control cultivars), early growth vigour, kernels per spike and kernel weight, the two yield components being alternative to each other. The efficiency of selection criteria was assessed in another set of 64 entries in terms of predicted yield responses and actual yield gains over target environments other than that of selection. Each of the three environments acted by turns as the selection environment and the remaining two as the target environments. These environments allowed for the assessment of selection criteria over a wide range of seasonal rainfall and mean yield levels. Large genotype×environment interaction was observed for yield and early vigour. Ranking of selection indexes for predicted and actual yield responses were fairly consistent, indicating an advantage of general indexes. The best among them, including heading displacement and kernels per spike, was, on the average, 20% and 11% more efficient than yield-based selection in terms of predicted and actual responses, respectively. The advantage of this index was the consequence of the absence of covariation and the moderate to high values of genetic correlation with yield over target environments, heritability and ratio of genotypic to genotype×environment interaction variance of its component traits.  相似文献   

8.
Four two-year field trials, arranged in randomised split-plots, were carried out in southern Sweden with the aim of determining whether reduced N fertiliser dose in winter wheat production with spring under-sown clover cover crops, with or without perennial ryegrass in the seed mixture, would increase the clover biomass and hence the benefits of the cover crops in terms of the effect on the wheat crop, on a subsequent barley crop and on the risk of N leaching. Four doses of nitrogen (0, 60, 120 or 180 kg N ha−1) constituted the main plots and six cover crop treatments the sub-plots. The cover crop treatments were red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in pure stands and in mixtures. The winter wheat (Triticum aestivum L.) was harvested in August and the cover crops were ploughed under in November. The risk of N leaching was assessed in November by measuring the content of mineral N in the soil profile (0–30, 30–90 cm). In the following year, the residual effects of the cover crops were investigated in spring barley (Hordeum distichon L.) without additional N. Under-sowing of cover crops did not influence wheat yield, while reduced N fertiliser dose decreased yield and increased the clover content of the cover crops. When N was applied, the mixed cover crops were as effective in depleting soil mineral nitrogen as a pure ryegrass cover crop, while pure clover was less efficient. The clover content at wheat harvest as well as the amount of N incorporated with the cover crops had a positive correlation with barley yield. Spring barley in the unfertilised treatments yielded, on average, 1.9–2.4 Mg DM ha−1 more in treatments with clover cover crops than in the treatment without cover crops. However, this positive effect decreased as the N dose to the preceding wheat crop increased, particularly when the clover was mixed with grass.  相似文献   

9.
In the northernmost European environments of Finland, large variability in the yield and quality of crops is a critical source of uncertainty for growers and end-users of grain. The aims of this study were (i) to quantify and compare the plasticity, i.e., cultivar responsiveness to environment, in yield of spring oat, spring wheat, six-row barley, two-row barley, winter rye, winter wheat, turnip rape and oilseed rape, (ii) to explore the existence of hierarchies or positive correlations in the plasticity of agronomic, yield and quality traits and (iii) to probe for trends in yield plasticity associated with different eras of breeding for yield potential and agronomic traits. Plasticities of yield, agronomic and quality traits were derived as slopes of norms of reaction using MTT Agrifood Research Finland data sets combining long-term (1970-2008 for cereals and 1976-2008 for rapeseed) results from 15 to 26 locations. Plasticity of yield ranged typically between 0.8 and 1.2, was smallest for six-row barley (0.84-1.11) and largest for winter rye (0.72-1.36). We found two types of associations between plasticity of yield and yield under stressful or favourable conditions for cereals but none for rape. In spring wheat, oat and six-row barley, high yield plasticity was associated with crop responsiveness to favourable conditions rather than yield reductions under stressful conditions. Modern spring wheat cultivars had higher maximum grain yields compared to older ones at the same level of plasticity. In winter wheat and rye, high yield plasticity resulted from the combination of high yield in favourable conditions and low yield in stressful environments. Many associations between yield plasticity and other traits were identified in cereals: e.g., high yield plasticity was often associated with higher grain weight, more grains per square meter, later maturity (contrary to turnip rape), shorter plants, less lodging and lower grain protein content and in winter cereals with higher winter damage.  相似文献   

10.
Wild oat (Avena fatua L.) is the most troublesome weed in cereal crops in Argentina. With the aim of studying the effects of different herbicides, doses, and wild oat growth stage at application on weed control and crop yield, field experiments were conducted in wheat and barley crops during three growing seasons in the south of Buenos Aires Province, Argentina. Treatments were post-emergence applications of new herbicide, pinoxaden + cloquintocet mexyl (5%-1.25%), at doses that ranged from 20 g to 60 g a.i. pinoxaden ha−1, applied at two to three leaves and the beginning of tillering of wild oat. In addition, standard treatments were included and applied at the same wild oat growth stages. Diclofop methyl at 511 g a.i. ha−1 and fenoxaprop-p-ethyl at 55 g a.i. ha−1 were applied in barley. In wheat, diclofop methyl was replaced by clodinafop-propargyl + cloquintocet mexyl (24%-6%) at 36 g a.i. clodinafop-propargyl + 9 g cloquintocet mexyl ha−1 and in 2008/09 wheat experiments, iodosulfuron plus metsulfuron methyl (5%-60%) at 3.75 g a.i. ha−1 + 3 g a.i. ha−1 also was included. In both crops, pinoxaden at 30 g a.i. ha−1 and at higher rates, fenoxaprop-p-ethyl and clodinafop-propargyl gave the best control of wild oat. In 2006/07 wheat crops, treatments applied at tiller initiation provided better control than the early timing averaged across herbicides. However, wheat yield generally was greater with early application. In barley, wild oat control and crop yield were similar regarding time of application. Variations in crop yield were correlated with grain number m−2 both in wheat and barley, but relationships between both grain number and spikes m−2 and with grains per spike were identified only in wheat.  相似文献   

11.
Agricultural drought occurs when there is a deficit in soil water supply to crops. Severe drought limits crop water availability and reduces yield. Rainfed crop production is very vulnerable to drought conditions and farmers in northeast of Iran who heavily depend on their rainfed cereals production usually suffer from drought occurrence. Based on history, any severe drought resulted in severe financial problems and forced the affected farmers to move to cities in search of alternative jobs. Any possibility to enable the farmers to mitigate or adapt to drought is highly required. In this study, the relationship between aridity index (AI) and detrended crop yield (1985–2005) of selected crops (wheat and barley) and the influence of three climate indices (AO, NAO and NINO-3.4) were assessed for Khorasan province in northeast of Iran. All associations were assessed at annual, seasonal (wet and dry seasons) and monthly scale considering both concurrent and lag correlations (1-year and 2-year lag). Our results indicated a significant correlation (P < 0.05) between the AI and crops yield mostly in central Khorasan province. Our study also showed that correlation coefficient between AI and barley yield was stronger than AI and wheat yield across all study locations. Seasonal (wet) AI showed significant correlation with crops yield. These results demonstrated that, in some areas of Khorasan, drought is one of the key causes of interannual yield variability. We also observed a significant association between NAO and NINO-3.4 with AI. Precipitation is one of the components of AI, so AI response to NAO and NINO-3.4 can be related to the observed association between this index and precipitation. It seems that these indices could be useful tools to monitor drought patterns and subsequent yield variability in some regions of Khorasan province.  相似文献   

12.
In the context of conservation agriculture on small scale farms of the Brazilian Cerrado, we hypothesized that planting a cover crop in relay with a commercial crop improves the efficiency of use of available natural resources, increasing biomass for use as fodder without reducing the grain yield of the main crop. The objective of this study was to measure the performance of two intercropped systems in terms of total above-ground biomass production and maize (Zea mays) grain yield: pigeon pea (Cajanus cajan) and Brachiaria (Brachiaria ruziziensis) sown as cover crops in established maize under a no-tillage management. The cover crops were sown at two different dates and a comparison was made with the three crops sown as a sole crop at the early sowing date. The experiment was conducted during the 2007-2008 and 2008-2009 growing seasons. Maize grain yield was not reduced by the presence of the relay cover crops in comparison with maize as the sole crop, even when the cover crop was sown soon after maize emergence. In contrast, the production of above-ground biomass by the cover crop was significantly lower when grown with maize than it was when grown as a sole crop. In the intercropped systems, when sown early, the cover crop produced higher total biomass than when sown late. Total above-ground biomass production of maize intercropped with a cover crop was much higher than that of any of the crops sown alone: the total biomass (average of the two growing seasons) produced by maize and pigeon pea was more than double that of maize grown alone. The land equivalent ratio (LER) of maize grain yield and biomass production was higher than one whatever the intercropped system used. It was particularly high when maize was intercropped with early sown pigeon pea; grain yield LER and biomass LER reaching, respectively, 1.72 and 1.73 in 2007-2008 and 2.02 and 2.03 in 2008-2009. These high LER values provide evidence for the complementary and the high efficiency of use of available resources by the intercropped plants and thus the advantage of such systems to produce both maize grain and cover crop forage under the conditions of our study.  相似文献   

13.
《Field Crops Research》1996,47(1):33-41
Wheat (Triticum aestivum L.) production in some dryland regions is severely limited by the cereal cyst nematode (Heterodera avenae Woll.). Conventional fallow management during a wet period has been shown to allow hatching of the cysts during the fallow season and thereby sanitize the soil for the subsequent wheat crop. Recently a straw mulch (SM) management has been introduced into a long-term experiment in the Negev region of Israel. This management ameliorated the nematode damage and allowed continuous wheat production. Only three seasons of successful experimentation exist with the SM system so questions remain about its performance over seasons with differing weather conditions. A simple, mechanistic, wheat model was extended to simulate wheat development and growth when the crop is grown on nematode-infested soils. Incorporating statements describing inhibition of rooting depth as a result of nematode activity resulted in good agreement between simulations and 16 seasons of yield observations on continuous wheat. The effect of SM was simulated simply by decreasing soil evaporation and this resulted in higher levels of soil water and decreased nematode inhibition of rooting. Good agreement was obtained between the three seasons of experimental data and simulations of the SM system, with predicted grain yield within 10% of observations. Over 16 seasons, simulations of the SM system indicated substantial grain yield increases over continuous wheat in all but the highest-yielding season. Simulations in 14 seasons with conventional fallow management revealed that annual yields of SM were equivalent to biennial yields of the fallow system, resulting in a predicted doubling of wheat production for this dryland region of the Negev.  相似文献   

14.
《Field Crops Research》2002,77(1):61-76
A long-term experiment with four rates of mineral nitrogen (N) application (averaged across all the crops in a crop rotation: 0, 50, 100, 150 kg ha−1 per year) was conducted on a fertile loess-derived soil in central Germany. The objectives of this study were to (i) determine the rates of mineral nitrogen N application required for maximum net energy output (energy output minus energy input), maximum energy output/input ratio, and minimum energy intensity (energy input per unit grain equivalent) for various crops in a realistic crop rotation (potatoes [Solanum tuberosum L.], winter wheat [Triticum aestivum L.], winter barley [Hordeum vulgare L.], sugar beets [Beta vulgaris L.], spring barley [Hordeum vulgare L.]): (ii) identify long-term trends (from 1968 to 2000) in the rates of mineral N application necessary to achieve the most efficient use of energy in the production of winter wheat and (iii) assess the effects of changing the system boundaries and the energy equivalents assigned to selected inputs on the energy balance by means of a sensitivity analysis. In the last two crop rotations (1989–1993 and 1994–1999), the amount of N fertilizer required to maximize net energy output of the main products (cereal grains, beet roots) increased in the order sugar beets–winter wheat–winter barley. At optimum N fertilization, the net energy output increased in the order winter barley–winter wheat–sugar beets. Averaged across the two rotations, the N fertilizer demand for a maximum output/input ratio and minimum energy intensity increased in the order sugar beets–winter wheat–winter barley. There was no clear-cut time trend in the rate of N application required to maximize grain yield and net energy output of wheat; maximum grain yield, maximum net energy output, and output/input ratio increased significantly with time, whereas the minimum energy intensity decreased over the experimental period. For all the crops, the rate of N application required for the maximum net energy output was much higher than that required for the maximum output/input ratio and minimum energy intensity.  相似文献   

15.
Selection for yield per se has greatly contributed to yield improvement in many crops. It is expected that selection based on plant traits is more effective in increasing crop yield potential. This study was conducted to compare the effectiveness of trait-based and yield-based selection in increasing rice yield and to determine whether lines with ideotype traits have the potential to express higher yield under optimal crop management conditions. Lines were selected based on plant traits or on grain yield measured in a breeder's replicated yield trial. The main target traits for selection were plant height, leaf and panicle morphology, grain size, total dry weight, and grain-filling percentage. Yield performance of trait-based selection was compared with that of yield-based selection in an agronomic trial with optimum crop management for three seasons. Trait-based selection increased leaf area index and total dry weight but reduced spikelet number per m2 and harvest index compared with yield-based selection. Consequently, selection based on plant traits did not increase grain yield compared with selection based on yield per se. In one of the three seasons, yield of trait-based selection was significantly lower than that of yield-based selection. Among all tested breeding lines, maximum yield was produced by yield-based selection and minimum yield came from trait-based selection. These results suggest that lines with ideotype traits did not express higher grain yield than lines selected based on yield per se under optimal crop management conditions, and yield-based selection was as effective in increasing rice grain yield as trait-based selection in the late generations of the breeding cycle.  相似文献   

16.
In the Mediterranean farming systems of the Western Australian wheatbelt, crop yields are influenced primarily by the amount and distribution of rainfall and the soil's capacity to hold moisture. The wheatbelt's growing season rainfall varies in the range of 200–400 mm (average) and the plant available water holding capacity (PAWC) of soils is generally in the 40–140 mm range. The grain yield of wheat is sensitive to this combination of small rainfall and small storage capacity.In this study, we explore the relationship between yield and PAWC using a combination of simulation modelling and analysis of field data. Crop yields and soil properties were monitored in detail at 17 locations (PAWCs 43–131 mm) across six seasons (1997–2005). Crop yields were also simulated using the APSIM crop simulator (RMSE = 311 kg/ha) to evaluate the long-term relationship between crop yield and plant available water capacity using 106 years of historical climate data.The relationship between crop yield and PAWC varied with season, and two important factors emerged: (1) for PAWC < 65 mm, there was a linear relationship with crop yields that ranged from 17 kg/ha/mm to 58 kg/ha/mm of PAWC across seasons; (2) for PAWC 65–131 mm the crop yield response to PAWC ranged from 11.5 kg/ha/mm in 45% of seasons to no response.The impact of PAWC on crop yield was reduced in seasons with late rainfall, and magnified in seasons with reduced rainfall late in the growing season. Six distinct season types with different yield–PAWC relationships are identified and season-specific management strategies that exploit within-field variation in PAWC are developed to manage the spatial variation of PAWC in a field.  相似文献   

17.
Grain legumes, such as peas (Pisum sativum L.), are known to be weak competitors against weeds when grown as the sole crop. In this study, the weed-suppression effect of pea-barley (Hordeum vulgare L.) intercropping compared to the respective sole crops was examined in organic field experiments across Western Europe (i.e., Denmark, the United Kingdom, France, Germany and Italy). Spring pea (P) and barley (B) were sown either as the sole crop, at the recommended plant density (P100 and B100, respectively), or in replacement (P50B50) or additive (P100B50) intercropping designs for three seasons (2003-2005). The weed biomass was three times higher under the pea sole crops than under both the intercrops and barley sole crops at maturity. The inclusion of joint experiments in several countries and various growing conditions showed that intercrops maintain a highly asymmetric competition over weeds, regardless of the particular weed infestation (species and productivity), the crop biomass or the soil nitrogen availability. The intercropping weed suppression was highly resilient, whereas the weed suppression in pea sole crops was lower and more variable. The pea-barley intercrops exhibited high levels of weed suppression, even with a low percentage of barley in the total biomass. Despite a reduced leaf area in the case of a low soil N availability, the barley sole crops and intercrops displayed high weed suppression, probably because of their strong competitive capability to absorb soil N. Higher soil N availabilities entailed increased leaf areas and competitive ability for light, which contributed to the overall competitive ability against weeds for all of the treatments. The contribution of the weeds in the total dry matter and soil N acquisition was higher in the pea sole crop than in the other treatments, in spite of the higher leaf areas in the pea crops.  相似文献   

18.
2009年采用大区试验,在前茬小麦免耕和耕作方式下,自然条件下对夏玉米田进行土壤含水量变化及夏玉米产量比较研究。结果表明,2009年夏玉米整个生育期降雨量为339.5 mm,前茬小麦两种耕作方式在不同时期不同土层的土壤平均含水量都在13%以上,并且两种方式不同土层平均含水量差异不显著;在夏玉米需水高峰期,相应的有效降水使土壤含水量能够满足夏玉米生长的需要。前茬小麦免耕和耕作下玉米平均产量分别为7 839.2、8 074.5 kg/hm2,差异不显著。因此,前茬小麦免耕可节省劳动量,防止水土流失,保护土壤结构,消除犁底层对作物根系生长与养分吸收的影响。  相似文献   

19.
In temperate cereals are commonly accepted that determination of grain number (GN) and grain weight (GW) scarcely overlap during the crop cycle. However, the assumption that GW is determined exclusively after anthesis needs to be critically reviewed in the light of reports published over the few years where temperature treatments imposed before anthesis decreased GW of bread wheat. Although these evidences suggest that both GW and GN could be affected by environmental conditions before anthesis little is known about the effect of pre-anthesis temperature on these two main yield components in wheat, barley and triticale at field conditions. In addition, the effect of temperature on GW and GN at different stages prior to anthesis has been scarcely evaluated. The objectives of the current study were: (i) to evaluate the overall response, and specific differences, of GN and GW to pre-anthesis temperature, and (ii) to study the effect of different timings of high temperature at pre-anthesis on GN and GW in wheat, barley and triticale. Three fully irrigated field experiments were carried out in three successive seasons. At each season, a wheat, barley and triticale high yielding cultivar was evaluated at three temperature regimes: control, and two timings of heating before anthesis. During the first and second seasons, the timings of heating were booting-anthesis and heading-anthesis. In the thirst season, the timings were beginning of stem elongation-booting and booting-anthesis. Plots were arranged in a split-plot design with three replicates, where the main plot was assigned to thermal regime and the sub-plots to crop species. To apply heat, transparent chambers equipped with thermostatically controlled electric heaters were used. The thermal regime was controlled by sensors connected to a temperature regulator and recorded using data loggers. Temperature within the chambers was stable across developmental stages, crops, and seasons; it averaged 5.5 °C higher than air temperature. Thermal treatments consistently reduced grain yield (p < 0.05), the magnitude of the effect ranged between 5 and 52%. The highest effect was found when temperature increased during stem elongation (yield decrease: 46%), lowest when treatments were imposed during heading-anthesis (15%) and intermediate for treatments imposed during booting-anthesis (27%). Most effects of thermal treatments on yield were due to parallel effects on GN. However, thermal treatments significantly (p < 0.05) decreased GW during the three seasons. The most effecting treatment on GW was when the crops were heated during the B-A period, i.e. GW decreased up to 23%.  相似文献   

20.
The Agricultural Production System Simulator (APSIM) was parameterised and tested against datasets from two field experiments being conducted on Heilu soil at the Qingyang Research Station, Gansu, China as to investigate long-term lucerne productivity and management options of reducing impact of lucerne on winter wheat yield in a lucerne–wheat rotation system. With minimal parameterisation and configuration of the APSIM-Lucerne module, APSIM was able to simulate phenological development and seasonal growth of winter-dormant lucerne cultivar, Longdong compared with the observed data. Flowering date was accurately simulated using the established relationship between accumulated thermal time and mean photoperiod. After the APSIM-Lucerne module was configured for the seasonal variation in RUE (radiation use efficiency), the model simulated lucerne seasonal biomass production over three growing seasons in the continuous lucerne treatment with a root mean squared deviation (RMSD) of 1132 kg/ha (30% of the mean observed biomass). In the treatment where lucerne was removed in August 2001 and two winter wheat crops were sown and harvested in 2001/2002 and 2002/2003 growing seasons, APSIM simulated winter wheat crop biomass in both growing seasons with a RMSD of 1420 kg/ha (20% of the mean observed crop biomass). Wheat grain yield was simulated with a RMSD of 918 kg/ha (27% of the mean observed grain yield). Using measurements of drained upper limit (DUL) and lower limit (LL), and standard soil evaporation and runoff parameters, the model was able to simulate soil water dynamics and water use by lucerne in the lucerne-fallow, continuous lucerne and lucerne–wheat treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号