首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the semi-humid to arid loess plateau areas of North China, water is the limiting factor for rain-fed crop yields. Conservation tillage has been proposed to improve soil and water conservation in these areas. From 1999 to 2005, we conducted a field experiment on winter wheat (Triticum aestivum L.) to investigate the effects of conservation tillage on soil water conservation, crop yield, and water-use efficiency. The field experiment was conducted using reduced tillage (RT), no tillage with mulching (NT), subsoil tillage with mulching (ST), and conventional tillage (CT). NT and ST improved water conversation, with the average soil water storage in 0–200 cm soil depth over the six years increased 25.24 mm at the end of summer fallow periods, whereas RT soil water storage decreased 12 mm, compared to CT. At wheat planting times, the available soil water on NT and ST plots was significantly higher than those using CT and RT. The winter wheat yields were also significantly affected by the tillage methods. The average winter wheat yields over 6 years on NT or ST plots were significantly higher than that in CT or RT plots. CT and RT yields did not vary significantly between them. In each study year, NT and ST water-use efficiency (WUE) was higher than that of CT and RT. In the dry growing seasons of 1999–2000, 2004–2005 and the low-rainfall fallow season of 2002, the WUE of NT and ST was significantly higher than that of CT and RT, but did not vary significantly in the other years. For all years, CT and RT showed no WUE advantage. In relation to CT, the economic benefit of RT, NT, and ST increased 62, 1754, and 1467 yuan ha−1, respectively, and the output/input ratio of conservation tillage was higher than that of CT. The overall results showed that NT and ST are the optimum tillage systems for increasing water storage and wheat yields, enhancing WUE and saving energy on the Loess Plateau.  相似文献   

2.
In Northern India, insufficient soil moisture and excessively high soil temperatures are reported to restrict growth of crops during the hot, dry months of April–June. A 3-year field experiment was conducted to evaluate the effects of three irrigation schedules based on ratios of 0.50, 0.75 and 1.00 times pan evaporation, and two levels of paddy straw mulch of 0 and 6 tons/ha on yield and quality of sugarcane for a sandy loam. The differential irrigations were restricted to 10–12 weeks before the monsoon season.Both irrigation and straw mulching had favourable effects on plant height and yield. Cane yield increased by an average of 13.8% for the 1.00 over the 0.50 times pan evaporation. Similarly, yield averaged 13.8% higher with mulch than without it. Interestingly, the pan evaporation ratio of 0.50 with mulch gave a higher yield than the ratio 1.00 without mulch. For the same yield, irrigation under mulching averaged 34 cm less than under no mulch. These beneficial effects were attributed to better soil moisture and temperature regimes with mulching. Irrigation and mulching had no effect on the quality of cane juice. These results indicate that straw mulching and early season irrigation to sugarcane based on 1.00 times pan evaporation is a promising practice for increasing sugarcane production in subtropical areas.  相似文献   

3.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

4.
Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.  相似文献   

5.
Response of timely and late seeded wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) to three levels of irrigation and four rates of nitrogen was investigated under pre-seeding irrigation. Water extraction pattern and water use of these crops varied markedly. Barley outyielded wheat by 27 and 9%, but used 9 and 21 mm less water, when one and two irrigations were given at critical stages, respectively. These results indicate the possibilities of considerable saving of water (100 mm) for barley without any decrease in grain yield and increased water-use efficiency (WUE) of wheat and barley by irrigating at critical stages as compared to irrigation at 75% depletion of available soil water (ASW). In general WUE decreased with increase in irrigation frequency and delay in seeding.Nitrogen fertilization with marginal additional water use (4–9%) increased yield linearly (45–98%) and thus increased WUE of wheat and barley. This additional water was extracted from below 60 cm depth at tensions ? 1.5 MPa and particularly in maximum growth and reproductive stages. These results suggest that barley should be preferred to wheat under medium to severe water stress and late seeding conditions.  相似文献   

6.
Soil water distribution, irrigation water advance and uniformity, yield production and water-use efficiency (WUE) were tested with a new irrigation method for irrigated maize in an arid area with seasonal rainfall of 77.5–88.0 mm for 2 years (1997 and 1998). Irrigation was applied through furrows in three ways: alternate furrow irrigation (AFI), fixed furrow irrigation (FFI) and conventional furrow irrigation (CFI). AFI means that one of the two neighboring furrows was alternately irrigated during consecutive watering. FFI means that irrigation was fixed to one of the two neighboring furrows. CFI was the conventional method where every furrow was irrigated during each watering. Each irrigation method was further divided into three treatments using different irrigation amounts: i.e. 45, 30, and 22.5 mm water for each watering. Results showed that the soil water contents in the two neighboring furrows of AFI remained different until the next irrigation with a higher water content in the previously irrigated furrow. Infiltration in CFI was deeper than that in AFI and FFI. The time of water advance did not differ between AFI, FFI and CFI at all distances monitored, and water advanced at a similar rate in all the treatments. The Christiansen uniformity coefficient of water content in the soil (CUs) was used to evaluate the uniformity of irrigated water distribution and showed no decrease in AFI and FFI, although irrigation water use was smaller than in CFI. Root development was significantly enhanced by AFI treatment. Primary root numbers, total root dry weight and root density were all higher in AFI than in the FFI and CFI treatments. Less irrigation significantly reduced the total root dry weight and plant height in both the FFI and CFI treatments but this was less substantial with AFI treatments. The most surprising result was that AFI maintained high grain yield with up to a 50% reduction in irrigation amount, while the FFI and CFI treatments all showed a substantial decrease of yield with reduced irrigation. As a result, WUE for irrigated water was substantially increased. We conclude that AFI is an effective water-saving irrigation method in arid areas where maize production relies heavily on repeated irrigation. Received: 16 October 1999  相似文献   

7.
Field studies were conducted during a 3-year period to determine wheat (Triticum aestivum L.) yield in response to irrigation scheduling and variable fertilization.Irrigation scheduling was done on the basis of cumulative pan evaporation. Irrigations were given at 25, 50 and 75% available water in the top 60 cm soil profile. The amount of irrigation water applied at each irrigation was equivalent to 75% of the cumulative open pan evaporation. The crop was fertilized at the rate of 0, 60, and 120 kg/ha nitrogen.The yield of wheat was significantly affected by irrigation water and nitrogen treatments. Maximum yield was obtained with irrigation at 50% available soil water and 120 kg/ha nitrogen addition (5092 kg/ha). Consumptive use of water was maximum when irrigation was applied at 75% available soil water. The irrigation at 50% available soil water, however, resulted in greatest yield per cm water use by the crop.  相似文献   

8.
The cost and scarcity of water is placing increasing pressure on Australian dairy farmers to utilise water for forage production as efficiently as possible. This study aimed to identify perennial forage species with greater water-use efficiency (WUE) than the current dominant species, perennial ryegrass (Lolium perenne L.). Fifteen perennial forage species were investigated under optimum irrigation and two deficit irrigation treatments, over three years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Under optimal irrigation, there was a nearly twofold difference in mean WUEt (total yield/evapotranspiration) between forages, with kikuyu (Pennisetum clandestinum Hochst. ex. chiov.) having the highest (27.3 kg ha−1 mm−1) and birdsfoot trefoil (Lotus corniculatus L.) the lowest (14.8 kg ha−1 mm−1). Kikuyu was also the most water use efficient forage under the extreme deficit irrigation treatment, although its mean WUEt declined by 15% to 23.2 kg ha−1 mm−1, while white clover (Trifolium repens L.) in the same treatment had the largest decline of 44% and the lowest WUEt of only 8.8 kg ha−1 mm−1. In order to maximise WUE for any forage, it is necessary to maximise yield, as there is a strong positive relationship between yield and WUEt.  相似文献   

9.
Field experiments were conducted at the Luancheng Agro-Ecosystem Experimental Station of the Chinese Academy of Sciences during the winter wheat growing seasons in 2006-2007 and 2007-2008. Experiments involving winter wheat with 1, 2, and 3 irrigation applications at jointing, heading, or milking were conducted, and the total irrigation water supplied was maintained at 120 mm. The results indicated that irrigation during the later part of the winter wheat growing season and increase in irrigation frequency decreased the available soil water; this result was mainly due to the changes in the vertical distribution of root length density. In ≤30-cm-deep soil profiles, 3 times irrigation at jointing, heading, and milking increased the root length density, while in >30-cm-deep soil profiles, 1 time irrigation at jointing resulted in the highest root length density. With regard to evapotranspiration (ET), there was no significant (LSD, P < 0.05) difference between the regimes wherein irrigation was applied only once at jointing; 2 times at jointing and heading; and 3 times at jointing, heading, and milking. Compared with 1 and 3 times irrigation during the winter wheat growing season, 2 times irrigation increased grain yield and 2 times irrigation at jointing and heading produced the highest water-use efficiency (WUE). Combining the results obtained regarding grain yield and WUE, it can be concluded that irrigation at the jointing and heading stages results in high grain yield and WUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.  相似文献   

10.
In the northwestern Loess Plateau of China, low precipitation results in poor crop yields, with a great fluctuation from year to year. The adoption of gravel-sand mulching has shown improvements in the growth of crops such as watermelon. The ridge and furrow rainwater harvest system (RFRHS) has been shown as an easy and efficient way to collect rainwater. A field experiment was conducted from 2007 to 2009 at Gaolan, Lanzhou, Gansu, China, to measure the effects of RFRHS, plastic mulch and gravel-sand mulch combinations on soil temperature, evapotranspiration (ET), water use efficiency (WUE) and watermelon yield. There were eight treatments: (1) flat gravel-sand mulched field, (2) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 1:1 of ridge and furrow, (3) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 4:3 of ridge and furrow, (4) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 5:3 of ridge and furrow, (5) RFRHS with a sand and plastic mulched furrow, bare ridge and the ratio 4:3 of ridge and furrow, (6) RFRHS with an entire plastic mulch and the ratio 4:3 of ridge and furrow, (7) conventional ridge planting with a plastic mulched ridge, and (8) flat gravel-sand mulched field plus 23 mm supplementary irrigation. Soil temperature for RFRHS with a gravel-sand plus plastic mulched furrow was slightly lower than that of flat gravel-sand mulch. The RFRHS caused a significant increase in watermelon yield and WUE. The increase in watermelon yield and WUE was greatly influenced by the ratio of ridge and furrow when RFRHS was combined with gravel-sand mulch. Watermelon yield was highest for the 1:1 ratio, and WUE was highest for the 5:3 and 1:1 ratios of ridge:furrow, and these were significantly greater than that of flat gravel-sand mulch, without or with irrigation. The use of ridge with plastic film mulch increased the beneficial effect of RFRHS on yield. The watermelon yield and WUE for non-plastic-mulched ridge were even lower than that of flat gravel-sand mulch. In summary, the findings suggest that RFRHS with gravel-sand mulched furrow plus plastic film mulch, and 1:1 ratio of ridge:furrow, would facilitate the use of limited rainfall most efficiently in improving watermelon yield, by reducing ET and increasing WUE in this semiarid region.  相似文献   

11.
This paper describes the components of water use in rice-based production systems and identifies water used during land preparation, and seepage and percolation during crop growth as important sources of water `loss' from the system. Strategies for increasing farm-level water-use efficiency are discussed, including the problems of up-scaling from on-farm to system-level water savings.  相似文献   

12.
Soil evaporation (Es) is considered to be a non-productive component of evapotranspiration (ET). So, measures which moderate Es may influence the amount of water available for transpiration (T), the productive component of ET. Field experiments investigating the effects of rice straw mulch on components of the water balance of irrigated wheat were conducted during 2006-2007 and 2007-2008 in Punjab, India, on a clay loam soil. Daily Es was measured using mini-lysimeters, and total seasonal ET was estimated as the missing term in the water balance equation. Mulch lowered total Es over the crop growth season by 35 and 40 mm in relatively high and low rainfall years, respectively. Much of this “saved water” was partitioned into T, which increased by 30 and 37 mm in the high and low rainfall years, respectively. As a result, total ET was not affected by mulch in either year. In both years, there was a trend for higher biomass production and grain yield with mulch, but with significant differences only in 2006-2007. Transpiration efficiency (TE) with respect to grain yield was 18.8-19.1 kg ha−1 mm−1 in 2006-2007, and 14.6-16.4 kg ha−1 mm−1 in 2007-2008. While wheat grown in the presence of mulch tended to lower TE, this was only significant in 2007-2008. The results suggest that while mulching of well-irrigated wheat reduces Es, it does not “save” water because the crop compensates by increased T and reduced TE.  相似文献   

13.
14.
In rainfed Mediterranean areas, early sowings which lead to early growth and maturity to escape terminal heat and drought usually give higher grain yield than late sowings in years when rains come early. We test the hypothesis that early sowing coupled with a small amount of irrigation to ensure earlier emergence increases grain yield significantly, while improving irrigation water productivity. Replicated field experiments were conducted for 4 years in the semi-arid central Bekaa Valley of Lebanon. Barley was sown early, and half of the plots were irrigated with 25-30 mm of water immediately after sowing (EI). Half of the plots also received irrigation around heading stage (LI). Besides yields, other agronomic data were collected throughout crop growth, and the supplemental irrigation water use efficiency (WUESI) was calculated. Our results confirm the hypothesis that in Mediterranean areas early sowing followed immediately with a small amount of irrigation increases barley grain yield significantly. Farmers in the region should seriously consider practicing this technique as it produces a higher WUESI than irrigation at the heading stage.  相似文献   

15.
Population growth, urban expansion and economic development are increasing competition for water use between agriculture and other users. In addition, the high rate of soil degradation and declining soil moisture in the Sub-Saharan African Region have called for several crop production management and irrigation options to improve soil fertility, reduce water use by crops and produce ‘more crops per drop of water’. Notwithstanding this, considerable variations exist in the literature on water-use efficiency, WUEcwu (economic yield per water used) for maize (Zea mays L.) across climates and soil management practices. Different views have been expressed on the effect of different rates of nitrogen (N) application on transpiration efficiency, TE (biomass produced per unit of water transpired). The objectives of the study were to assess the effect of different rates of N-enriched municipal waste co-compost and its derivatives on TE, WUEcwu and yield of maize (Z. mays L.) in comparison to inorganic fertiliser. The greenhouse pot experiment was conducted in Accra, Ghana on a sandy loam soil (Ferric Lixisol) using a split plot design. The main plot treatments were soil (S), dewatered faecal sludge (DFS), municipal solid waste compost (C), co-compost from municipal solid waste and dewatered faecal sludge (Co), compost enriched with (NH4)2SO4 (EC), co-compost enriched with (NH4)2SO4 (ECO), (NH4)2SO4 and NPK15-15-15 + (NH4)2SO4. The sub-plot treatments were different rates of application of nitrogen fertiliser applied at the rate of 91, 150 and 210 kg N ha−1 respectively. Maize cv. Abelehii was grown in a poly bag filled with 15 kg soil. Eight plants per treatment were selected randomly and used for the collection of data on growth parameters forth-nightly. At physiological maturity two plants per treatment were also selected randomly from each treatment plot for yield data. The results showed that TE of maize (Z. mays) varied for the different treatments and these are 6.9 Pa in soil (S) alone to 8.6 Pa in ECO. Increase in N application rate increased TE at the vegetative phase for fast nutrient releasing fertilisers (DFS, ECO, EC, NPK + (NH4)2SO4, (NH4)2SO4) and at the reproductive phase for slow nutrient releasing fertilisers (C and CO). Water-use efficiency increased significantly as rate of N application increased. Treatment ECO improved crop WUEcwu and was 11% and 4 times higher than that for NPK + (NH4)2SO4 or soil alone; and 18-36% higher than those for DFS and CO. Treatment ECO used less amount of water to produce dry matter yield (DMY) and grain yield (GY) that was 5.2% and 12.6%, respectively, higher than NPK + (NH4)2SO4. Similarly, the DMY and GY for ECO was 8.9-18.5% and 23.4-34.7%, respectively, higher than DFS and CO. High nutrient (N and K) uptake, TE, and low leaf senescence accounts for 83% of the variations in DMY whereas WUEcwu accounts for 99% of the variations in GY. Thus, the study concluded that different sources of fertiliser increased TE and WUEcwu of maize differently as N application rate increases.  相似文献   

16.
以华北地区冬小麦为试验对象,参考直径20 cm标准蒸发皿的累计水面蒸发量E,通过2 a的大田试验(2012—2013),研究了大田地表滴灌条件下水氮耦合制度对作物耗水量、作物生理指标、产量、氮残留及水氮利用效率的影响,结果表明,冬小麦生育期内的耗水量、叶面积指数及产量受灌水定额的影响更为显著(P<0.05);滴灌条件下,当施氮量在120~290 kg/hm2时,水氮耦合效应对冬小麦耗水量的影响不具有统计学意义;在滴灌灌水定额为0.80E,施氮量为140~190 kg/hm2的水氮耦合模式下,冬小麦的产量较高,土壤硝态氮的当季残留较少,且进一步显著增加灌水定额和氮肥投入量将导致产量的明显下降;综合考虑冬小麦水氮利用效率和对地下水的潜在淋失风险,华北典型区滴灌水氮耦合的优化组合范围宜为灌水定额为0.80E,施氮量为140~190 kg/hm2.  相似文献   

17.
麦秸覆盖条件下果树蓄水保墒技术研究   总被引:1,自引:0,他引:1  
通过室内外的试验 ,分析了苹果树在麦秸覆盖条件下的蓄水保墒效果 ,研究表明 :采用覆盖处理有很好的保持土壤墒情和明显的调节地温的作用。同时通过果实生长曲线的测定 ,提出了果树蓄水保墒的关键时期  相似文献   

18.
The approval of the National Irrigation Plan (NIP) in Spain in 2001 accelerated the improvement and modernisation of the irrigated areas. The first step towards the implementation of performance of the actions envisaged in the plan is to analyse water-use in traditional irrigation. Moreover, the social impacts of irrigation on rural areas must be evaluated, and the common irrigation practices must be determined. This paper presents the results of a study conducted in the Lemos Valley irrigation district (NW of Spain). Irrigation evaluations were conducted in nine trial sites, representing the existing soil types. A sample of irrigation users were interviewed to gather information about water-use, land tenure and irrigation socioeconomics. This irrigation district is characterised by low water-use efficiency, significant losses in the distribution network, fragmented land ownership and a poor use of the available infrastructure. Yet, water availability and an important distribution network render the modernisation of this traditional irrigated land a challenging task that must be faced.  相似文献   

19.
Fresh water shortages are severally restricting sustainable agriculture development in the North China Plain. The scarcity of fresh water has forced farmers to use brackish water from shallow underground sources, which helps to overcome drought and increase crop yields but also increases the risk of soil salinization. To identify safe and effective ways of using brackish water in this region, field experiments were conducted to evaluate the effect of brackish water irrigation and straw mulching on soil salinity and crop yield in a winter wheat-summer maize double cropping system. The experiment was in a split-plot design. Six rates of straw mulching (0, 4.5, 6.0, 7.5, 15.0 and 30.0 Mg/ha) were assigned to the main plots and two irrigation water qualities (i.e. brackish water with salt content of 3.0-5.0 g/L and fresh water with only 1.27 g salt/L) were applied to subplots. The brackish water irrigation significantly increased the salt content at different soil depths in the upper 1 m soil layer during the two growing seasons. Straw mulching affected the vertical distribution of salt in the brackish water irrigation plots and the average salt content of straw mulch treatments (4.5, 6.0, 7.5, 15.0 and 30.0 Mg/ha) within the 0-20, 20-40 and 0-100 cm soil depths was 10.2, 14.0 and 1.8% lower than that without straw mulch (A0). No salt accumulation occurred to a depth of 1 m in the brackish water irrigation plots and there was no correlation between the value of SAS (salt accumulated in 1 m of soil) and straw mulch rate. In 2000 and 2001, the salt content within the 0-40 cm soil layer in brackish water irrigation plots increased due to high evaporation rates during April-June, and then decreased up to September as salts were leached by rain. For the fresh water irrigation plots, the salt content remained relatively stable. Straw mulching affected the salt content in the 0-40 cm soil layer in brackish water irrigation plots in different periods of 2000 and 2001, but no correlation between salt content and straw mulch rates was observed except in September of 2000. Unlike for wheat, the yield of maize increased as the straw mulch rate increased according to the equation, y = 0.1589x + 5.3432 (R2 = 0.6506). Our results would be helpful in adopting brackish water irrigation and straw mulching in ways that enhance crop yields and reduce the risk of soil salinization. However, long-term effects of brackish water irrigation and straw mulching on soil salinity and crop yield need to be further evaluated for sustainability of the system.  相似文献   

20.
Conservation tillage systems generally improve soil organic C (SOC), plant available water capacity (PAWC), aggregation and soil water transmission. A field experiment was conducted for 4 years (2001-2002 to 2004-2005) to study tillage (conventional tillage (CT) and zero tillage (ZT)) systems. The selected irrigation treatments were at four levels (I1: pre-sowing (PS), I2: PS + active tillering (AT)/crown root initiation (CRI), I3: PS + AT/CRI + panicle initiation (PI)/flowering (FL), and I4: PS + AT/CRI + PI/FL + grain filling (GF)), applied at the critical growth stages on rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Their effects on direct seeded rice productivity and soil properties (SOC and selected physical properties) after rice and wheat harvest were investigated. Soil organic C contents after rice and wheat harvest in the 0-15 cm soil depth were higher under ZT than under CT. Soil organic C increased significantly with I2 over I1 for both crops and with I4 over I2 for the wheat crop. The PAWC was significantly higher with ZT than CT. Zero tilled and frequently irrigated plots showed enhanced infiltration characteristics (infiltration rate, cumulative infiltration and sorptivity) and saturated hydraulic conductivity. Both direct seeded rice and wheat yields were not significantly different in the plots under ZT and CT. There was a significant increase in both rice and wheat yields in the plots under I2 over I1. However, water use efficiency between irrigation treatments was not significantly different. Hence, under direct seeded rice-wheat system in a sandy clay loam soil of the sub-temperate Indian Himalayas, farmers may adopt ZT with two irrigations in each crop for optimum resource conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号