首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
This study was conducted to assess crop water stress index (CWSI) of bermudagrass used widely on the recreational sites of the Mediterranean Region and to study the possibilities of utilization of infrared thermometry to schedule irrigation of bermudagrass. Four different irrigation treatments were examined: 100% (I1), 75% (I2), 50% (I3), and 25% (I4) of the evaporation measured in a Class A pan. In addition, a non-irrigated treatment was set up to determine CWSI values. The status of soil water content and pressure was monitored using a neutron probe and tensiometers. Meanwhile the canopy temperature of bermudagrass was measured with the infrared thermometry. The empirical method was used to compute the CWSI values. In this study, the visual quality of bermudagrass was monitored seasonally using a color scale. The best visual quality was obtained from I1 and I2 treatments. Average seasonal CWSI values were determined as 0.086, 0.102, 0.165, and 0.394 for I1, I2, I3, and I4 irrigation treatments, respectively, and 0.899 for non-irrigated plot. An empirical non-linear equation, Qave=1+⌊6[1+(4.853 CWSIave)2.27]−0.559Qave=1+6[1+(4.853 CWSIave)2.27]0.559, was deduced by fitting to measured data to find a relation between quality and average seasonal CWSI values. It was concluded that the CWSI could be used as a criterion for irrigation timing of bermudagrass. An acceptable color quality could be sustained seasonally if the CWSI value can be kept about 0.10.  相似文献   

11.
The determination of target uniformity for sprinkler irrigation system should consider the impacts of nonuniformity of water and fertilizers on crop yield. Field experiments were therefore conducted in north China plains to address the impacts of nonuniformly applied water and fertilizers on winter wheat yield. Irrigation water and fertilizers were applied through a solid set sprinkler system. Three experimental plots were used with seasonal Christiansen uniformity coefficients (arithmetic mean of individual CUs) ranging from 62 to 82%. Each plot was divided into 3m×3m grids. Sprinkler water depth and concentration of fertilizer solution for each grid was measured both below and above the canopy for each individual irrigation event. The spatial distribution of soil moisture for each experimental plot was also measured periodically to determine irrigation times and amounts. On harvest, grain yield and total nitrogen content of plant stems were measured for each grid. The experimental results showed that the uniformity of fertilizer applied increased with sprinkler water uniformity. The distributions of both fertilizers and water applied through sprinkler system can be represented by a normal distribution function. Field experiments also demonstrated that the uniformity of sprinkler-applied water and fertilizers has insignificant effect on winter wheat yield for the studied uniformity range. The current standard for sprinkler uniformity (for example, the target CU is equal to or higher than 75% in China) is high enough for obtaining a reasonable crop yield in dry sub-humid regions.  相似文献   

12.
The effect of first irrigation (26, 40 and 54 days after seeding) and the rate of irrigation (5.5, 7.5 and 9.5 cm) applied subsequently at IWEpan ratio of 0.9 on wheat root distribution, water extraction pattern and grain yield was studied on a barrier-free, sandy loam soil. The crop developed a more extensive root system when the first irrigation was applied after 26 days than after 40 and 54 days. With the first irrigation on the 26th day, the crop, receiving subsequent irrigations less frequently but at a heavier rate, developed a deeper root system than the crop receiving frequent, light irrigations. The water extraction pattern corresponded with the root distribution pattern. A relatively small difference in root density in the deeper layers caused a greater difference in soil water content than in the upper layers. Light and frequent irrigations produced maximum grain yields. However, for developing an extensive root system and enhancing water utilization in the subsoil, an early, light irrigation with subsequent irrigations applied less frequently at a relatively heavier rate seems desirable.  相似文献   

13.
Numerical solutions of the seepage equation of groundwater flow were used in an analysis of the effect on drain performance of the herring-bone pattern of vertical fissuring, with fractures fanning out from the central slit, in mole-drained soils. Drain performances were assessed from values of the dimensionless parameter Wm = 2EmqD2, where Em is the ‘seepage potential’ at the position of maximum water-table height when the steady rainfall is q and the drain spacing is 2D. Wm decreased with increase in the length of the fractures and, to a lesser extent, with decrease in the spacing of them, showing that the fracturing enables a mole-drainage system to cope with higher rainfall rates and to produce more rapid water-table drawdowns.  相似文献   

14.
Summary Barley plants (Hordeum distichum, L., cv. Zita) grown in a sandy soil in pots were adjusted during a pretreatment period of 5 days to three levels of soil water osmotic potential by percolating 61 of a nutrient solution with additional 0, 22.3 and 44.6 mM KCl. A drying cycle was then started and the plants were harvested when the soil water matric potential had decreased to –1.4 MPa, respectively 6, 7 and 8 days later.No significant differences in dry matter yields, transpiration coefficients and wilting percentages were found between treatments.During the drying cycle leaf water potential ( l ) decreased concomitantly with decrease in soil water potential ( s ) with almost constant and similar differences ( l s ) for all treatments despite differences in levels of potentials. The concomitant decrease in leaf osmotic potential () was due partly to dehydration (58%) and partly to increase in leaf solute content (42%) independent of treatment. The part of total osmotic solutes due to K decreased relatively during the drying cycle.Close relationships were found between and l as functions of relative water content (RWC). Identical curves for the two levels of salt treatment agree with similar concentrations of K, Cl, and ash found for salt treated plants indicating that maximum uptake of macro nutrients may have been reached.During the main part of the drying cycle the turgor potential as function of RWC was higher and decreased less steeply with decreasing RWC in the salt treated than in the non-salt treated plants.In the beginning of the drying cycle additions of KCI lowered the transpiration rates of the salt treated plants resulting in a slower desiccation of the soil and hence an increased growth period. A delay in uptake from a limited soil water supply may be advantageous during intermittent periods of drought.  相似文献   

15.
Hydraulic conductivity (K) and soil water diffusivity (D) characterizing water flow under saturated and unsaturated conditions, respectively, were determined for a sandy loam and a clay loam soil, using water with different combinations of total electrolyte concentrations, C (i.e., 20, 40, 80, 125 and 250 meq 1?1) and sodium adsorption ratios, SAR (i.e., 0, 20, 30, 40, 80 and ∞ mmole l?12). Both K and D were found to increase with C and decrease with SAR. In low sodium adsorption ratio ranges (i.e., up to 20) the requirement of electrolyte concentration to maintain relative hydraulic conductivity = 0.5 was relatively more for sandy loam than for clay loam soil. However, the trend for electrolyte concentration requirements for the two soils was reversed at high sodium adsorption ratios (i.e. > 20). A spline function was used to draw the best fitting line through the data points of horizontal absorption experiments.  相似文献   

16.
Summary The objective of the research reported was to improve the calibration procedure used for thermocouple hygrometers. If the wet bulb temperature is defined by the maximum point-of-inflection voltage of the psychrometer output, then a unique point with maximum sensitivity to water potential is obtained (Figs. 2, 3). A predictive model based on calibration data at a few temperatures is used to obtain the psychrometer calibration slope at any temperature (eq. 11 to 15). Use of this model indicates that psychrometers differ from each other (Tables 4, 5) and therefore must be individually calibrated. Dewpoint hygrometers are shown to be less temperature sensitive than thermocouple psychrometers (Fig. 4) and have the added advantage of a voltage sensitivity nearly twice that of psychrometers, –7.0 X 10–3 V kPa–1 compared to –3.7 X 10–3 V kPa–1 at 25 °C. However, the accuracy of thermocouple hygrometers is critically dependent on the correct setting of the dewpoint cooling coefficient, particularly at temperatures less than (about) 15 °C. At 15 °C, for example, the coefficient must be set within 1 % of the true value in order for the correct voltage to have an error of less than 4%.Work supported by grants from the University of Natal Research Fund and the Department of Agriculture and Fisheries, South Africa  相似文献   

17.
Root system parameters determining water uptake of field crops   总被引:2,自引:0,他引:2  
Summary The distribution of a crop rooting system can be defined by root length density (RD), root length (RL) per soil layer of depth z, sum of root length (SRL) in the soil profile (total root length) or rooting depth (z r . The combined influence of these root system parameters on water uptake is not well understood. In the present study, field data are evaluated and an attempt is made to relate a daily maximum water uptake rate (WUmax) per unit soil volume as measured in different soil layers of the profile to relevant parameters of the root system. We hypothesize that local uptake rate is at its maximum when neither soil nor root characteristics limit water flow to, and uptake by, roots. Leaf area index and the potential evapotranspiration rate (ET p ) are also important in determining WUmax, since these quantities influence transpiration and hence total crop water uptake rate. Field studies in Germany and in Western Australia showed that WUmax depends on RD. In general, there was a strong correlation between the maximum water uptake rate of a soil layer (LWUmax) normalized by ET p and RL normalized by SRL. The quantity LWUmax · ET p -1 was linearly related to (RL/SRL)1/2. The data show that the single root model will not predict the influence of RD on WUmax correctly under field conditions when water-extracting neighboring roots may cause non-steady-state conditions within the time span of sequential observations. Since the rooting depth z r was linearly related to (SRL)1/2, the relation: LWUmax · ET p -1 = f (RL1/2/z r ) holds. Furthermore it was found that the maximum specific uptake rate per cm root length URmax was inversely related to RD1/2 and to SRL1/2 or z r of the profile. Observed high specific uptake rates of shallow rooted crops might be explained not only by their lower RD-values but also by the additional effect of a low z r . The relations found in this paper are helpful for realistically describing the sink term of dynamic water uptake models.Growing plants extract water from the soil to meet transpiration needs. Rates of transpiration and of water uptake are set by evaporative demand and by plant and soil factors which influence capacity to meet that demand. These factors include crop canopy size and leaf characteristics, root system characteristics and hydraulic properties of the soil and the soil-root interface. Soil and root system properties vary with depth and all factors vary in time, so that parameters related to them require constant updating over a crop season.Dynamic simulation models describe water uptake by root systems under field conditions as a function of soil depth and time. Many of these simulation approaches are based on Gardner's (1960) single root model (Feddes 1981). These simulation procedures follow the assumption that water uptake is proportional to a difference in water potential between the bulk soil and the root surface or the plant interior, to the hydraulic conductivity of the soil-plant system and to the effectiveness of competing roots in water uptake. The effectiveness factor accounts more or less empirically for the influence of various root system parameters on water uptake such as percentage of active roots absorbing water, root surface permeability, root length density determining the distance between neighbouring roots, or total root length and depth of the root system. Such models however, will not always reflect correctly the influence of root system characteristics on water uptake since these assumptions have rarely been tested under field conditions. In many instances, there is better agreement between simulated and measured total water use of plants than between predicted and observed water depletion by roots within individual layers of the soil profile (Alaerts et al. 1985).Water uptake by an expanding root system as a function of depth and time has been studied under field conditions for several crops (listed in Herkelrath et al. 1977a; Feddes 1981; Hamblin 1985). They show that the dynamics of water uptake depend on root length density and the availability of soil water. However, the combined influence of root length density, total root length and rooting depth on the water uptake pattern has not been assessed. An evaluation of root system parameters with respect to soil water extraction should aid our understanding of how roots perform under field conditions and may assist our efforts to formulate the water uptake function of roots in dynamic simulation studies more realistically.The aim of the present investigation is to develop an approach that relates measured water uptake rates to relevant parameters of the root systems. This approach will be confined to situations where water uptake in a soil layer is not restricted by unfavorable soil conditions, such as in wet soil, by insufficient aeration and, in dry soil, by reduced water flow towards roots or by increased contact resistance (Herkelrath et al. 1977b). We will define a maximum water uptake rate WUmax that is neither soil-limited nor appreciably limited by the decreasing permeability of aging roots. This WUmax will be related to relevant root system parameters as they exist when WUmax is observed. Hence, water uptake by roots in a very wet, as well as in a dry soil, has been excluded from consideration.  相似文献   

18.
In semiarid and arid landscapes, irrigation sustains agricultural activity but because of increasing demands on water resources there is a need to make gains in efficiency. As such spatial variation of soil properties such as clay and salinity needs to be understood because they strongly influence soil moisture availability. One way is to use electromagnetic induction because apparent soil electrical conductivity (ECa) is related to volumetric soil moisture (θ), clay and salinity (ECe). However, depth-specific variation has not been explored. Our aim is to generate electromagnetic conductivity images (EMCIs) by inverting DUALEM-421 ECa and show how true electrical conductivity (σ) can be correlated with θ, clay, ECe and bulk density (ρ) on different days post-irrigation (i.e., 1, 4 and 12 days). Two-dimensional multi-resolution analysis (MRA) is used to show how spatio-temporal variation in σ is scale-specific and how soil properties influence σ at different scales. We study this beneath a pivot irrigated alfalfa crop. We found that σ on days 1 and 4 was correlated with θ (Pearson’s r = 0.79 and 0.61) and clay (0.86 and 0.80) and the dominant scale of variation occurred at 9.3–18.7 m (50.21 % of total variation), >74.7 m (23.18 %) and 4.7–9.3 m (16.29 %). Between 9.3–18.7 and 4.7–9.3 m the variation may be a function of the cutter width (8 m), while >74.7 m may be change in clay and ECe and gantry spacing (~48 m). The sprinkler spacing (1.2 and 1.6 m) explains short-scale variation at 1.2–2.3 m.  相似文献   

19.
Summary In order to study the drought sensitivity of pea (Pisum sativum L. cv. Bodil) during different growth phases, a field experiment was conducted in 1985 and 1986 on coarse textured sandy soil with low water-holding capacity. Drought occurred naturally or was imposed by shelters during the vegetative, the flowering and the pod filling growth phase, respectively. Drought sensitivities were assessed as the ratio between relative yield decrease (1 – Ya/Ym) and relative evapotranspiration deficit (1 – ETa/ETm) of the individual growth phases, where Ya and ETa are the actual yield and evapotranspiration, respectively, of a drought stressed plot and Ym and ETm are the maximum yield and evapotranspiration of the fully irrigated treatment. Root growth was followed by measuring root density (L v ) in 10 cm soil layers to a depth of 50 cm. The leaf osmotic potential at full hydration ( s 100 ) was measured in the last fully developed leaf during the growing season.The available water capacity was estimated to be 42–50 mm on the basis of a plot of ETa/ETm versus soil water deficit measured by the neutron moderation method or direct measurement of the root depth. The root zone with L v >0.1 cm–2 only reached a depth of 35 cm at the end of the flowering phase and a depth of 45–50 cm at maturity. Root growth continued during the drought periods. The drought sensitivity of pea was high during the flowering phase, especially in 1986 when water stress developed rapidly, and considerably lower during the pod filling phase. The yield reduction caused by drought in the flowering phase was mainly the result of a lower number of pods per stalk. Severe drought did not occur during the vegetative phase. The leaf osmotic potential ( s 100 ) declined from c. -0.75 MPa to c. -1.30 MPa during the growing season. Osmotic adjustment was largest during drought in the early growth phases; in 1985 s 100 decreased 0.5 MPa under relatively slow drought development during the flowering phase while in 1986, when drought stress developed rapidly, s 100 only decreased 0.2 MPa. Osmotic adjustment may have caused the lower drought sensitivity in 1985 than in 1986 and mediated the continued root growth during drought.  相似文献   

20.
Irrigation scheduling requires an operational means to quantify plant water stress. Remote sensing may offer quick measurements with regional coverage that cannot be achieved by current ground-based sampling techniques. This study explored the relation between variability in fine-resolution measurements of canopy temperature and crop water stress in cotton fields in Central Arizona, USA. By using both measurements and simulation models, this analysis compared the standard deviation of the canopy temperature to the more complex and data intensive crop water stress index (CWSI). For low water stress, field was used to quantify water deficit with some confidence. For moderately stressed crops, the was very sensitive to variations in plant water stress and had a linear relation with field-scale CWSI. For highly stressed crops, the estimation of water stress from is not recommended. For all applications of one must account for variations in irrigation uniformity, field root zone water holding capacity, meteorological conditions and spatial resolution of T c data. These sensitivities limit the operational application of for irrigation scheduling. On the other hand, was most sensitive to water stress in the range in which most irrigation decisions are made, thus, with some consideration of daily meteorological conditions, could provide a relative measure of temporal variations in root zone water availability. For large irrigation districts, this may be an economical option for minimizing water use and maximizing crop yield.
M. P. González-DugoEmail: Phone: +34-957-016030Fax: +34-957-016043
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号