首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

2.
This study was designed to evaluate the yield response of low-energy precision application (LEPA) and trickle-irrigated cotton grown on a clay-textured soil under the arid Southeast Anatolia Project (GAP) area conditions during the 1999 growing season at Koruklu in Turkey. The effects of four different irrigation levels (100, 75, 50, and 25% of cumulative Class-A pan evaporation on a 6-day basis) for LEPA, and two irrigation intervals (3-day and 6-day) and three different levels (100, 67, and 33% of cumulative Class-A pan evaporation on a 3-day and 6-day basis) for the trickle system on yield were investigated. Water was applied to alternate furrows through the double-ended Fangmeier drag-socks in the LEPA system. Trickle irrigation laterals were laid out on the soil surface at a spacing of 1.40 m. A total of 814 mm of water was applied to the full-irrigation treatments (100%) for both irrigation systems. Seasonal water use ranged from 383 to 854 mm in LEPA treatments; and 456 to 868 mm in trickle treatments. Highest average cotton yield of 5850 kg/ha was obtained from the full-irrigation treatment (100%) in trickle-irrigated plots with 6-day intervals. The highest yield in LEPA plots was obtained in LEPA-100% treatment with an average value of 4750 kg/ha. Seed cotton yields varied from 2660 to 5040 kg/ha and 2310 to 5850 kg/ha in trickle irrigation plots with 3-day and 6-day intervals, respectively, and from 2590 to 4750 kg/ha in LEPA plots. Irrigation levels both in LEPA and trickle-irrigated plots significantly increased yield. However, there was no significant yield difference between 100 and 67% irrigation levels in trickle-irrigated plots. Maximum irrigation water use efficiency (IWUE) and water use efficiency (WUE) were found as 0.813 and 0.741 kg/m3 in trickle-irrigated treatment of 67% with 6-day interval. Both IWUE and WUE values varied with irrigation quantity and frequency. The research results revealed that both the trickle and LEPA irrigation systems could be used successfully for irrigating cotton crop under the arid climatic conditions of the GAP area in Turkey.  相似文献   

3.
A 3-year project compared the operation of a subsurface drip irrigation (SDI) and a furrow irrigation system in the presence of shallow saline ground water. We evaluated five types of drip irrigation tubing installed at a depth of 0.4 m with lateral spacings of 1.6 and 2 m on 2.4 ha plots of both cotton and tomato. Approximately 40% of the cotton water requirement and 10% of the tomato water requirement were obtained from shallow (<2 m) saline (5 dS/m) ground water. Yields of the drip-irrigated cotton improved during the 3-year study, while that of the furrow-irrigated cotton remained constant. Tomato yields were greater under drip than under furrow in both the years in which tomatoes were grown. Salt accumulation in the soil profile was managed through rainfall and pre-plant irrigation. Both drip tape and hard hose drip tubing are suitable for use in our subsurface drip system. Maximum shallow ground water use for cotton was obtained when the crop was irrigated only after a leaf water potential (LWP) of −1.4 MPa was reached. Drip irrigation was controlled automatically with a maximum application frequency of twice daily. Furrow irrigation was controlled by the calendar.  相似文献   

4.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

5.
In rainfed rice ecosystem, conservation of rainwater to maximum extent can reduce the supplemental irrigation water requirement of the crop and drainage need of the catchment. The results of 3 years of experimental study on the above stated aspects in diked rice fields with various weir heights (6–30 cm at an interval of 4 cm) revealed that about 56.75% and 99.5% of the rainfall can be stored in 6 and 30 cm weir height plots, respectively. Sediment losses of 347.8 kg/ha and 3.3 kg/ha have been recorded in runoff water coming out of 6 cm and 30 cm weir height plots, respectively in a cropping season. Similarly, total Kjeldahl nitrogen (TKN) loss in runoff water from rice field ranged from 4.23 kg/ha (6 cm weir height plots) to 0.17 kg/ha (26 cm weir height plots) and available potassium loss ranged from 2.20 kg/ha (6 cm weir height plots) to 0.04 kg/ha (30 cm weir height plots). Conservation of rainwater in rice fields with various weir heights could not create any significant impact on grain yield differences, leaf area index and other biometric characters. Irrigation requirement of 18 cm and above weir height plots was found to be half of the requirement of 6 cm weir height plots. Keeping in view the aspects of conserving rainwater, sediment and nutrient and minimizing irrigation requirement, 22–26 cm of dike height is considered to be suitable for rice fields of Bhubaneswar region.  相似文献   

6.
The Central Anatolian Plateau of Turkey is a typical cool highland rainfed wheat area with an annual rainfall of 300–500 mm. Due to suboptimal seasonal rainfall amounts and distribution, wheat yields in the region are low and fluctuate substantially over seasons. Delayed sowing due to late rainfall affects early crop establishment before winter frost and causes substantial reduction in yield. A 4-year field study (1998/1999 to 2001/2002) was carried out at Ankara Research Institute of Rural Services to assess the impact of early sowing with supplemental irrigation (SI) and management options during other dry spells on the productivity of a bread wheat cultivar, “Bezostia”. Treatments included early sowing with 50 mm irrigation and normal sowing with no irrigation as main plots. Four spring (SI) levels occupied the sub-plots. These are rainfed (no-irrigation), full irrigation to sature crop water requirements and two deficit irrigation levels of 1/3 and 2/3 at the full irrigation treatments.Results showed that early establishment of the crop, using 50 mm of irrigation water at sowing, increased grain yield by over 65% and adding about 2.0 t/ha to the average rainfed yield of 3.2 t/ha. Early sowing with SI allowed early crop emergence and development of good stand before being subjected to the winter frost. As a result, the crop used rainwater more efficiently. Additional supplemental irrigation in the spring also increased yield significantly. Grain yields of 5120, 5170 and 5350 kg/ha were obtained by applying 1/3, 2/3 and full SI, respectively. The mean productivity of irrigation water given at sowing was 3.70 kg/m3 with maximum value of 4.5 kg/m3. Water productivity of 1/3, 2/3 and full SI were 2.39, 1.46 and 1.27 kg/m3, respectively, compared to rainwater productivity of 0.96 kg/m3.  相似文献   

7.
Diagnosis of water management at the irrigation district level is required for the rational modernisation of the irrigation schemes and the subsequent increase in the efficiency of water allocation and application. Our objectives were to: (i) evaluate the global irrigation performance in the 5282 ha La Violada surface-irrigated district (Ebro River Basin, northeast Spain), and (ii) estimate the water that could potentially be conserved under two scenarios of modernisation and three increased irrigation efficiencies. The main district’s water inputs and outputs were measured (irrigation, precipitation, and outflow surface drainage) or estimated (canal releases, lateral surface runoff, municipal wastewaters, and actual evapotranspiration of crops) during the 1995–1998 hydrological years. The annual average water outputs were 23% higher than the corresponding water inputs, presumably due to canal seepage and lateral groundwater inflows from the 14 355 ha dry-land watershed. The district-level irrigation performance was poor (mean 1995–1998 seasonal irrigation consumptive use coefficient (ICUC)=48%), due to the low distribution (DE) and on-farm (ICUCf) efficiencies (i.e., mean estimates of 83% (DE) and 61% (ICUCf) for the 1995–1996 irrigation seasons). Thus, despite the high volume of applied irrigation water, the actual district ET was 16% lower than the maximum achievable ET, indicating that the water-stressed crops yielded below their maximums. Potential reductions in water allocation were estimated for three ICUC values (65, 75 and 85%) and two scenarios of modernisation (I and II). In scenario I, where the aim was to achieve maximum ET and crop yields, water allocation could be reduced from 8 to 30% of the current allocation. In scenario II, where the aim was to achieve the maximum conservation of water under the actual ET and crop yields, reductions in water allocation would be much higher (from 26 to 43% of current allocation). Thus, significant volumes of water could be conserved in the rehabilitation of this 50-year-old district by increasing the distribution efficiency and, in particular, the on-farm irrigation efficiency.  相似文献   

8.
The effects of supplemental irrigation and irrigation practices on soil water storage and barley crop yield were studied for a crust-forming soil at the University of Jordan Research Station near Al-Muwaqqar village during the 1996/97 growing season. An amount of 0.0, 48.9, 73.3, 122.2 and 167 mm supplemental irrigation water were applied. The 48.9, 73.3 and 122.2 mm applications were applied through surface irrigation into furrows with blocked ends, and the 0.0 and 167 mm applications via sprinkler irrigation. The greatest water infiltration and subsequent soil storage was achieved with the 122.2 mm application followed by the 73.3 mm irrigation, both surface applied. Application efficiency (the fraction of applied water that infiltrated into the soil and stored in the 600 mm soil profile) and soil water storage associated with supplemental blocked furrow irrigation was significantly greater than with supplemental sprinkler irrigation. For arid zone soil, which has little or no structural stability, application of supplemental irrigation water via short, blocked-end furrows prevents runoff and increases the opportunity time for infiltration, thereby increasing the amount of applied water that is infiltrated into the soil and stored in the soil profile. Supplemental irrigation, applied by a low-rate sprinkler system, was not as effective because of the low infiltration rates that resulted from the development of a surface throttle due to dispersion of soil aggregates at the soil surface. The differences in stored water had a significant effect on grain and straw yields of barley. Without supplemental irrigation, barley grain and straw yields were zero in natural rainfall cultivation with a total rainfall of 136.5 mm. Barley yields in the control treatment, with a 167 mm supplemental sprinkler irrigation were low being 0.19 and 1.09 ton/ha of barley grain and straw, respectively. Supplemental irrigation through blocked-end furrows increased barley grain and straw yields significantly compared with supplemental sprinkler irrigation to a maximum of 0.59 and 1.8 ton/ha, respectively. The improvement coming from the increased water storage associated with furrows. Since irrigation water is very limited if available, farmers are encouraged to form such furrows for reducing runoff from rainfall thereby increasing the amount of water available for forage and field crop production.  相似文献   

9.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

10.
Water value as agriculture production may be overlooked, though it is an important factor to rational water allocations within a region. An analysis of cotton (Upland and Pima) lint yield, lint yield-consumptive use ratio (LY:ETc), water-use efficiency (WUE) and lint price for Arizona (AZ) and California (CA) during 1988–1999 is considered as part of an attempt to determine lint water value, or benefit. It included determination of means and variability of cotton lint production, LY:ETc ratios and associated irrigation water values (IWVs) and compared these numbers with published estimates of WUE, forage hay water values and municipal water costs. Available rainfall, reference evapotranspiration (ETo), lint yields and price data for counties in both states were used. Consumptive use was estimated using a four-stage crop coefficient function verified by literature values or County Advisor experience. As with dry matter production, cotton lint yields in interior valley regions of CA were weakly correlated with ETc and averaged 1.33 Mg/ha (Upland) and 1.08 Mg/ha (Pima). Cotton lint yields in desert regions of AZ and CA were not correlated with ETc. The greatest LY:ETc ratios (1.9–2.1 kg/ha-mm) were in the San Joaquin valley of CA, were similar to that from WUE type studies and resulted in gross IWVs (∼3400–3800 US$/ha-m), with relatively moderate variability at a net irrigation water requirement (IWR) of approximately 720 mm. While this IWV is 2.5 times greater than water delivery prices below the California Delta, it is less than average municipal water costs of ∼4200 US$/ha-m for Los Angeles, San Francisco and Pheonix while the overall AZ/CA average cotton lint IWV is considerably less. However, cotton lint IWV is two to three times greater than that obtained for alfalfa and sudangrass hay crops in all regions.  相似文献   

11.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

12.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required.  相似文献   

13.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

14.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

15.
Optimizing irrigation scheduling for winter wheat in the North China Plain   总被引:1,自引:0,他引:1  
In the North China Plain (NCP), more than 70% of irrigation water resources are used for winter wheat (Triticum aestivum L.). A crucial target of groundwater conservation and sustainable crop production is to develop water-saving agriculture, particularly for winter wheat. The purpose of this study was to optimize irrigation scheduling for high wheat yield and water use efficiency (WUE). Field experiments were conducted for three growing seasons at the Wuqiao Experiment Station of China Agriculture University. Eleven, four and six irrigation treatments, consisting of frequency of irrigation (zero to four times) and timing (at raising, jointing, booting, flowering and milking stage), were employed for 1994/95, 1995/96 and 1996/97 seasons, respectively. Available water content (AWC), rain events, soil water use (SWU), evapotranspiration (ET) and grain yield were recorded, and water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated.The results showed that after a 75-mm pre-sowing irrigation, soil water content and AWC in the root zone of a 2-m soil profile during sowing were 31.1% (or 90.7% of field capacity) and 16.1%, respectively. Rainfall events were variable and showed a limited impact on AWC. The AWC decreased significantly with the growth of wheat. At the jointing stage no water deficits occurred for all treatments, at the flowering stage water deficits were found only in the rain-fed treatment, and at harvest all treatments had moderate to severe soil water deficits. The SWU in the 2-m soil profile was negatively related to the irrigation water volume, i.e. applying 75 mm irrigation reduced SWU by 28.2 mm. Regression analyses showed that relationships between ET and grain yield or WUE could be described by quadratic functions. Grain yield and WUE reached their maximum values of 7423 kg/ha and 1.645 kg/m3 at the ET rate of 509 and 382 mm, respectively. IWUE was negatively correlated with irrigated water volume. From the above results, three irrigation schedules: (1) pre-sowing irrigation only, (2) pre-sowing irrigation + irrigation at jointing or booting stage, and (3) pre-sowing irrigation + irrigations at jointing and flowering stages were identified and recommended for practical winter wheat production in the NCP.  相似文献   

16.
In general, cotton is irrigated by surface methods in Turkey although sprinkler and drip irrigation have been suggested as a means of supplying most types of crops with frequent and uniform applications of water, adaptable over a wide range of topographic and soil conditions. Recently, sprinkler irrigation systems have been introduced for cotton as a result of increased pressure to develop new irrigation technology suited to limited water supply as well as to specific topographic and soil conditions. In this study, the effects of three different irrigation methods (furrow, sprinkler and drip) on seed-cotton yield, shedding ratio and certain yield components are presented. The research was carried out in The Southeastern Anatolia Region (GAP) of Turkey from 1991 to 1994. The maximum cotton yields were 4380, 3630 and 3380 kg/ha for drip, furrow and sprinkler irrigation, respectively. Drip irrigation produced 21% more seed-cotton than the furrow method and 30% more than the sprinkler method. Water use efficiencies (WUE) proved to be 4.87, 3.87 and 2.36 kg/ha/mm for drip, furrow and sprinkler, respectively. Shedding ratios ranged from 50.8 to 59.0% (furrow), 52.9 to 64.8% (sprinkler), 50.8 to 56.8% (drip), depending on the amount of water applied. The shedding ratio for sprinkler irrigation was significantly higher than that of either furrow (P=0.10) or drip irrigation (P=0.05), resulting in lower seed-cotton yield for sprinkler irrigation. For all methods, a quadratic relationship was found between the amount of water applied and shedding ratios, with the least shedding occurring between 1000 and 1500 mm of water. Both limited and over-irrigation increased the shedding ratio for all methods. Accordingly, a lower boll number per plant and a lower seed-cotton yield were obtained from sprinkler-irrigated cotton; a significantly decreasing linear relationship between the shedding ratio and the total cotton yield and boll number per plant.  相似文献   

17.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

18.
Efficient irrigation regimes are becoming increasingly important in commercial orchards. Accurate measurements of the components of the water balance equation in olive orchards are required for optimising water management and for validating models related to the water balance in orchards and to crop water consumption. The aim of this work was to determine the components of the water balance in an olive orchard with mature ‘Manzanilla’ olive trees under three water treatments: treatment I, trees irrigated daily to supply crop water demand; treatment D, trees irrigated three times during the dry season, receiving a total of about 30% of the irrigation amount in treatment I; and treatment R, rainfed trees. The relationships between soil water content and soil hydraulic conductivity and between soil water content and soil matric potential were determined at different depths in situ at different locations in the orchard in order to estimate the rate of water lost by drainage. The average size and shape of the wet bulb under the dripper was simulated using the Philip’s theory. The results were validated for a 3 l h−1 dripper in the orchard. The water amounts supplied to the I trees during the irrigation seasons of 1997 and 1998 were calculated based on the actual rainfall, the potential evapotranspiration in the area and the reduction coefficients determined previously for the particular orchard conditions. The calculated irrigation needs were 418 mm in 1997 and 389 mm in 1998. With these water supplies, the values of soil water content in the wet bulbs remained constant during the two dry seasons. The water losses by drainage estimated for the irrigation periods of 1997 and 1998 were 61 and 51 mm, respectively. These low values of water loss indicate that the irrigation amounts applied were adequate. For the hydrological year 1997–1998, the crop evapotranspiration was 653 mm in treatment I, 405 mm in treatment D and 378 mm in treatment R. Water losses by drainage were 119 mm in treatment I, 81 mm in treatment D and 4 mm in treatment R. The estimated water runoff was 345 mm in treatments I and R, and 348 mm in treatment D. These high values were due to heavy rainfall recorded in winter. The total rainfall during the hydrological year was 730 mm, about 1.4 times the average in the area. The simulated dimensions of the wet bulb given by the model based on the Philip’s theory showed a good agreement with the values measured. In a period in which the reference evapotranspiration was 7.9 mm per day, estimations of tree transpiration from sap flow measurements, and of evaporation from the soil surface from a relationship obtained for the orchard conditions, yielded an average daily evapotranspiration of 70 l for one I tree, and 48 l for one R tree.  相似文献   

19.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

20.
Experiments were conducted to estimate nitrogen loss through drainage effluent in subsurface drained farmers’ field at a coastal site near Machilipatnam, Andhra Pradesh, India. The concentration of three forms of nitrogen, namely, NH4–N, NO2–N and NO3–N in the subsurface drainage effluent from 15, 35 and 55 m drain spacing areas were measured in 1999 and 2000. The area with 15 m spacing was already reclaimed during 1986–1998 by the subsurface drainage system. The soil salinity of the root zone was brought down from an initial high of 35 to 4 dS m−1. The subsurface drainage system with 35 and 55 m drain spacing was laid in the adjoining area and commissioned in 1998. Earlier raising of any crop in the area with 35 and 55 m spacings was not possible due to very high salinity, sodicity and poor drainage conditions. The nitrate-nitrogen loss dominated in reclaimed land with 15 m spacing whereas ammonium-nitrogen loss dominated in the land that was highly saline and in the initial stage of reclamation by the subsurface drainage technology with 35 and 55 m drain spacing. The total nitrogen loss of 3.75 kg per ha per year in 15 m drain spacing area was minimum and 23.53 kg per ha per year in 35 m drain spacing area was maximum. The nitrate-nitrogen loss contributed the maximum of 82% and ammonium- and nitrite-nitrogen contributed 11 and 7%, respectively, in 15 m drain spacing area whereas the ammonium losses contributed 93 and 82% in 35 and 55 m drain spacing areas, respectively. The losses in the form of nitrite and nitrate remained negligible in 35 m drain spacing area, but the losses to the tune of 8 and 15% in the form of nitrite and nitrate, respectively, occurred in 55 m drain spacing area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号