首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

2.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

3.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

4.
《Field Crops Research》2002,74(1):81-91
Despite the economic importance of tobacco, there is limited field study on the quantitative response of growth and yield to increasing soil salinity. The effects of irrigation with saline water on yield components of field-grown tobacco (Nicotiana tabacum L.) “Burley” type plants were studied over two growing seasons. Growth, dry matter partitioning and gas exchange were measured either in rainfed or fully irrigated plants growing in a clayey–sandy–loam soil. The four fully irrigated treatments received amounts of saline waters at 0.54, 2.5, 5.0 or 10 dS m−1 electrical conductivity (ECw) equal to crop evapotranspiration. In both years, the electrical conductivity of the saturation phase (ECe) across the 0.6 m topsoil profile increased with increasing salinity of the irrigation water. Soil moisture was markedly lower in the rainfed treatment than in fully irrigated treatments. Different saline concentrations of irrigation water had virtually no effect on soil moisture. Carbon assimilation rate, stomatal conductance and water use efficiency of the saline treatments were lower than the fully irrigated plants at 0.54 dS m−1 (NW treatment) in 1996, but not in 1997. Transpiration rates were unaffected by salinity in both years. The highest yield was produced by plants irrigated with good quality water. The number of leaves per unit land area was greater for the NW plants, whereas there were no differences between the other four treatments. Salinity decreased plant dry matter and height at harvest, increased dry matter partitioning into leaves and decreased that into stems in both years. Dry matter partitioning to leaves was also greater for the rainfed plants than for the NW plants. Tobacco plants grown under field conditions showed a maximum reduction of relative yield at the highest salinity level of only 31%. The threshold values (0.56 and 0.96 dS m−1) and the ECe at which a 10% yield reduction was obtained (3.12 and 2.55 dS m−1) calculated from the linear model of response of relative yield to increasing ECe were typical of moderately sensitive crops. The ECe values at which 50% yield was reduced (13.34 and 8.91 dS m−1) were indicative of moderate tolerance to salinity.  相似文献   

5.
《Field Crops Research》2005,93(1):10-22
Cereal–legume intercropping plays an important role in subsistence food production in developing countries, especially in situations of limited water resources. Crop simulation can be used to assess risk for intercrop productivity over time and space. In this study, a simple model for intercropping was developed for cereal and legume growth and yield, under semi-arid conditions. The model is based on radiation interception and use, and incorporates a water stress factor. Total dry matter and yield are functions of photosynthetically active radiation (PAR), the fraction of radiation intercepted and radiation use efficiency (RUE). One of two PAR sub-models was used to estimate PAR from solar radiation; either PAR is 50% of solar radiation or the ratio of PAR to solar radiation (PAR/SR) is a function of the clearness index (KT). The fraction of radiation intercepted was calculated either based on Beer's Law with crop extinction coefficients (K) from field experiments or from previous reports. RUE was calculated as a function of available soil water to a depth of 900 mm (ASW). Either the soil water balance method or the decay curve approach was used to determine ASW. Thus, two alternatives for each of three factors, i.e., PAR/SR, K and ASW, were considered, giving eight possible models (2 methods × 3 factors). The model calibration and validation were carried out with maize–bean intercropping systems using data collected in a semi-arid region (Bloemfontein, Free State, South Africa) during seven growing seasons (1996/1997–2002/2003). The combination of PAR estimated from the clearness index, a crop extinction coefficient from the field experiment and the decay curve model gave the most reasonable and acceptable result. The intercrop model developed in this study is simple, so this modelling approach can be employed to develop other cereal–legume intercrop models for semi-arid regions.  相似文献   

6.
Lesquerella fendleri (Gray) Wats. is a potential new oilseed crop for the arid southwestern United States. Lesquerella seed oil with similar properties as castor oil is being considered as a domestic replacement for the imported castor oil. Development of new crops with low irrigation needs is of high priority. Because the most critical stage of sensitivity to moisture deficits has not been determined in Lesquerella species, the objectives of this study were: (i) to identify the most critical stage or stages for moisture deficit and, (ii) to determine the effect of moisture deficit on yield, yield components, oil and fatty acid composition. Two-year field studies were conducted at the New Mexico State University, Leyendecker Plant Science Research Center. The experimental design was a randomized complete block. The treatments consisted of (a) T1: Continuous favorable soil moisture [irrigated at 50% soil water depletion (SWD)]. (b) T2: Moisture stress (75% SWD) from establishment to initial flowering with no stress from flowering to final harvest (50% SWD). (c) T3: No stress imposed from establishment to initial flowering (50% SWD) followed by stress to final harvest (75% SWD). (d) T4: Moisture stress (75% SWD) from establishment to final harvest. The amount of water applied ranged from 810 to 729 mm for the first year, and 810 to 625 mm for the second year. Seed weight per plant and number of pods per plant were generally higher when water availability was maintained at or above 50% SWD throughout the growing season. Neither seed number per pod nor seed size was influenced by irrigation treatments. Lesquerella was more sensitive to water availability during flowering and seed development as a greater loss in seed yield occurred when irrigation was delayed to 75% SWD during that stage of development. Seed yield and dry matter production from the 2 year field studies were closely related to the seasonal cumulative evapotranspiration. For each millimeter of evapotranspiration, seed yield increased from 1.8 kg ha−1 mm in 1994–1995 to 1.3 kg ha−1 mm for 1995–1996. The dry matter production increased 13.4 kg ha−1 for each mm increase in seasonal evapotranspiration during 1994–1995. This relationship was a second order polynomial with an R2 of 0.86 during 1995–1996. The WUEgr and WUEdm were highest under the most favorable water availability conditions for growth and seed development. Delaying irrigation to 75% SWD throughout the crop growth period resulted in the lowest oil content. Lesquerolic acid content was not affected by irrigation during both the growing seasons.  相似文献   

7.
《Field Crops Research》1998,58(1):55-67
The current nitrogen (N) use in silage maize production can lead to considerable N losses to the environment. Maize growers fear that a reduction of N inputs needed to minimize N losses might depress yields. The objective of this study was therefore to quantify: (1) the response of silage maize dry matter (DM) yields to N, (2) the economically optimal N reserve, and (3) the trade-off between silage maize DM yield and N losses. The indicators of N losses used in this study were the difference between N input and N uptake and the post-harvest residual soil mineral N. Regression models were used to fit DM yields and N uptakes of silage maize measured in 25 experiments on sandy soils in the Netherlands to the sum (SUMN) of the soil mineral N reserve (SMNearly) in March–April, plus mineral N in fertilizer, plus ammonium N in spring-applied slurry. The values obtained for the economically optimal SUMN in the upper 30 and 60 cm of soil were, respectively, 173 and 195 kg N ha−1, when we assumed that the value of 1 kg fertilizer N equals the value of 5 kg silage DM. The economically optimal SUMN was not significantly related to the attainable DM yield. The apparent N recovery (ANR) of maize averaged 53% at the economically optimal SUMN. The ANR rose considerably, however, when N was applied at lower rates, indicating that N losses may be considerably smaller in less intensive maize cropping. When maize was fertilized at 100 kg N ha−1 below the economic optimum, the ANR was 73%, the difference between the mineral N input and the N crop uptake decreased by 57 kg N ha−1 and the soil mineral N residue at the end of the growing season (0–60 cm) decreased by 24 kg N ha−1. The associated reduction in DM yield averaged 16%. Fertilizer prices would have to be as much as four times higher to make maize growers spontaneously reduce the application rates by a 100 kg N ha−1, however. It is concluded that adjusting the N input to a level below the economically optimal rate can reduce the risks for N losses to the environment associated with conventional maize production, with a limited effect on silage yields.  相似文献   

8.
《Field Crops Research》1999,63(3):211-224
Vertic Inceptisols are prone to land degradation because of excessive run-off and soil erosion during the rainy season. Productivity of soybean-based systems on these soils needs to be improved and sustained by better management of natural resources, particularly soil and water. During 1995–1997 a field study was conducted in Peninsular India on a Vertic Inceptisol watershed to study the effect of two soil depths, namely shallow (<50 cm soil depth) and medium-deep (≥50 cm soil depth) and two landform treatments, namely flat and broadbed-and-furrow (BBF) systems, on productivity and resource-use efficiency of soybean–chickpea rotation (soybean in rainy season followed by chickpea in post-rainy season). Soybean grown on flat landform on medium-deep soil had a higher leaf area index and more light interception compared to the soybean grown on the BBF landform. This resulted in an increase in mean seed yield for the flat landform (2120 kg ha−1) compared to the BBF landform (1870 kg ha−1). However, the landform treatments on shallow soil did not affect soybean yields. The soybean yield was higher on the medium-deep soil (1760 kg ha−1) than on the shallow soil (1550 kg ha−1) during 1995–1996, but were not different during 1996–1997. In both years chickpea yields and total system productivity (soybean + chickpea yields) were greater on medium-deep soil than on the shallow soil. Total run-off was higher on the flat landform (25% of seasonal rainfall) than on the BBF landform (20% of seasonal rainfall). This concomitantly increased profile water content (10–30 mm) of both soils in BBF compared to the flat landform treatment during 1995–1996, but not during 1996–1997. Deep drainage was higher in the BBF landform than in flat, especially for the shallow soil. Across landforms and soil depths, water use (evapotranspiration) by soybean–chickpea rotation during 1996–1997 ranged from 496 to 563 mm, which accounted for 54–61% of the rainfall. These results indicate that while the BBF system is useful in decreasing run-off and increasing infiltration of rainfall on Vertic Inceptisols, there is a need to increase light use by soybean on BBF during the rainy season to increase its productivity. A watershed-based farming system needs to be adopted to capture significant amount of rain water lost as run-off and deep drainage. The stored water can be used for supplemental irrigation to increase productivity of soybean-based systems leading to overall increases in resource-use efficiency, crop productivity, and sustainability.  相似文献   

9.
《Field Crops Research》2001,69(3):267-277
The potential rate of plant development and biomass accumulation under conditions free of environmental stress depends on the amount of radiation absorption and the efficiency of utilizing the absorbed solar energy to drive photosynthetic processes that produce biomass materials. Salinity, as a form of soil and water stress, generally has a detrimental effect on plant growth, and crops such as soybean are usually sensitive to salinity. Field and greenhouse experiments were conducted to determine soybean growth characteristics and the relative impact of salinity on radiation absorption and radiation-use efficiency (RUE) at a whole plant level. Cumulative absorption of photosynthetically active radiation (∑APAR) was estimated using hourly inputs of predicted canopy extinction coefficients and measured leaf area indices (LAI) and global solar radiation. On 110 days after planting, soybean plants grown under non-saline conditions in the field accumulated 583 MJ ∑APAR m−2. A 20% reduction in ∑APAR resulted from growing the plants in soil with a solution electrical conductivity (EC) of about 10 dS m−1. Soybeans grown under non-saline conditions in the field achieved a RUE of 1.89 g MJ−1 ∑APAR for above-ground biomass dry materials. The RUE reached only 1.08 g MJ−1 ∑APAR in the saline soil, about a 40% reduction from the non-saline control. Salinity also significantly reduced ∑APAR and RUE for soybeans in the greenhouse. The observed smaller plant and leaf sizes and darker green leaves under salinity stress were attributed to reductions in LAI and increases in unit leaf chlorophyll, respectively. Reductions in LAI exceeded small gains in leaf chlorophyll, which resulted in less total canopy chlorophyll per unit ground area. Analyzing salinity effect on plant growth and biomass production using the relative importance of ∑APAR and RUE is potentially useful because APAR and total canopy chlorophyll can be estimated with remote sensing techniques.  相似文献   

10.
《Field Crops Research》2002,78(1):51-64
The effects of differential irrigation and fertiliser treatments on the water use of potatoes (Solanum tuberosum L. cv. Desirée) were studied over 2 years in the hot dry climate of northeast Portugal. Total actual evapotranspiration (ETc) ranged from 150 to 320 mm in 1988, and from 190 to 550 mm in 1989 depending mainly on irrigation treatment, potential evaporation rates (ETp) and duration of the growing season. By comparison, the effects of nitrogen fertiliser on total water use were relatively small. Although nitrogen increased transpiration (larger leaf canopy), it reduced evaporation from the soil surface, in frequently irrigated plots, by similar amounts. As a result, in well-irrigated crops, the ETc/ETp ratio averaged 0.85 over the season, regardless of nitrogen level. Evaporation from the soil surface represented 15–25% of total water use by well-fertilised plants, but as much as 30–50% from the sparse stands of unfertilised crops. The proportion of water extracted from each depth increment of the silt-loam soil declined logarithmically, from the surface to 1.1 m depth, the maximum measured, for irrigated crops, and linearly when rain-fed. The ETc/ETp ratio fell below unity when 25–30% of the available water in the top metre had been depleted, equivalent to soil water deficits (SWDs) of 45–50 mm. By comparison, ETc declined to zero when 75–90% of the available water had been extracted, corresponding to actual deficits of 135–150 mm. Peak ETc rates reached 12–13 mm per day on days immediately following irrigation, nearly twice ETp (possibly due to the influence of advection) but then declined logarithmically with time to about 3 mm per day within 5 days. Using the same data, a companion paper reports the influence of climatic conditions on the yield responses to water of potato crops grown in the region.  相似文献   

11.
Crop genotypes with root traits permitting increased nutrient acquisition would increase yields in low fertility soils but have uncertain effects on soil fertility in the long term because of competing effects on nutrient removal vs. the soil conserving effects of greater crop biomass. This study evaluated the relative importance of phosphorus loss in crop extraction vs. phosphorus loss in soil erosion as influenced by genetic differences in root shallowness and therefore phosphorus uptake in common bean (Phaseolus vulgaris L.). Six recombinant inbred lines of varying root architecture and two commercial genotypes of bean were grown in unfertilized, steeply sloped (32%), low phosphorus (5.8 mg kg?1, Fe-strip) Udults in Costa Rica. Fertilized (60 kg total phosphorus ha?1) plots of commercial genotypes were also included in the study. Runoff was monitored throughout the bean growing season in 2005 and 2006, and in 2006, monitoring continued through the maize growing season. Phosphorus removed in plant biomass at harvest through the 2006 bean–maize crop cycle averaged 7.3 kg ha?1 year?1, greatly exceeding phosphorus loss due to erosion (0.15–0.53 kg ha?1 year?1) in unfertilized plots. In fertilized bean plots, total biomass phosphorus averaged 6.32 kg ha?1 year?1 and total eroded phosphorus averaged 0.038 kg ha?1 year?1, indicating rapid sorption of fertilizer phosphorus. Shoot growth of several recombinant inbred lines under low phosphorus was comparable to that of fertilized commercial genotypes, illustrating the effectiveness of selection for root traits for improving plant growth in low-phosphorus soils. Genotypic differences in root architecture of recombinant inbred lines led to 20–50% variation in groundcover by shoots, which was associated with 50–80% reduction in sediment loss. This study demonstrates that root architecture traits can affect nutrient cycling at the agro-ecosystem level, and that integrated nutrient management strategies are necessary to avoid soil nutrient depletion.  相似文献   

12.
《Field Crops Research》2004,89(1):17-25
The pigeonpea (Cajanus cajan (L.) Millsp.) crop retains appreciable amounts of green foliage even after reaching physiological maturity, which if allowed to defoliate, could augment the residual benefit of pigeonpea to the following wheat (Triticum aestivum L.) in a pigeonpea–wheat rotation. The effect of addition of leaves present on mature pigeonpea crop to the soil was examined on the following wheat during the 1999/2000 growing season at Patancheru (17°4′N, 78°2′E) and during the 2001–2003 growing seasons at Modipuram (29°4′N, 77°8′E). At Patancheru, an extra-short-duration pigeonpea cultivar ICPL 88039 was defoliated manually and using foliar sprays of 10% urea (30 kg/ha) and compared with a millet (Pennisetum glaucum (L.) R.Br.) crop, naturally senesced leaf residue and no-leaf residue controls. At Modipuram, the effect of 10% urea spray treatment on mature ICPL 88039 was compared with the unsprayed control. At both locations, the rainy season crops were followed by a wheat cultivar UP 2338 at four nitrogen levels applied in a split plot design, which at Patancheru were 0, 30, 90 and 120 kg N ha−1 and at Modipuram 0, 60, 120 and 180 kg N ha−1. At Patancheru, urea spray added 0.5 t ha−1 of extra leaf litter to the soil within a week without significantly affecting pigeonpea yield. This treatment, however, increased mean wheat yield by 29% from 2.4 t ha−1 in the no-leaf residue pigeonpea or pearl millet plots to 3.1 t ha−1. At Modipuram, the foliar sprays of urea added more leaf litter to the soil than at Patancheru. Here, increase in subsequent wheat yield due to additional pigeonpea leaf litter was 7–8% and net profit 21% more than in the unsprayed control. The addition of pigeonpea leaf litter to the soil resulted in a saving of 40–60 kg N for the following wheat crops in both the environments. The results demonstrated that pigeonpea leaf litter could play an important role in the fertilizer N economy in wheat. The urea spray at maturity of the standing pigeonpea crop significantly improved this contribution in increasing wheat yield, the effect of which was additional to the amount of urea used for inducing defoliation. The practice, if adopted by farmers, may enhance sustainability of wheat production system in an environmentally friendly way, as it could reduce the amount of fertilizer N application to soil and enhance wheat yield.  相似文献   

13.
《Field Crops Research》1999,63(2):99-112
Field experiments were conducted at Gatton and Dalby in southeastern Queensland to determine parameters associated with radiation interception and biomass and nitrogen (N) accumulation for the ley legume species, phasey bean (Macroptilum lathyroides (L.) Urban) and vigna, (Vigna trilobata (L.) Verdc.). Sesbania (Sesbania cannabina Retz.), a native legume species, and soybean (Glycine max (L.) Merrill)) were included in the study for comparison. The most important differences between species related to differences in radiation interception, radiation-use efficiency (RUE), N-accumulation efficiency and the partitioning of N to plant parts. During early growth, soybean intercepted more radiation than the other species, primarily because of its greater leaf area index (LAI). Sesbania had the highest RUE (1.08 g MJ−1) followed by phasey bean (0.94 g MJ−1), soybean (0.89 g MJ−1) and vigna (0.77 g MJ−1). The efficiency of N-accumulation was greater in soybean (0.028 g N g−1) and phasey bean (0.030 g N g−1) than in vigna (0.022 g N g−1) and sesbania (0.021 g N g−1). In all species, the proportion of N allocated to leaves declined throughout the experimental period, being more rapid in soybean than in sesbania and phasey bean. Despite this decline in total N partitioned to the leaves, both soybean and phasey bean maintained a relatively stable specific leaf nitrogen (SPLN) throughout the experimental periods although sesbania and vigna displayed rapid decreases in SPLN. The large variation between species in RUE and N-accumulation efficiency indicates that the development of ley legume cultivars with a combination of traits for more efficient legume production, water use and soil N-accumulation in the water-limited environments of the grain belt of eastern Australia may be possible. The sensitivity of forage production, water use and soil N-accumulation to variation in RUE and N-accumulation efficiency needs to be quantified using modeling techniques prior to embarking on screening programs to select appropriate germplasm for evaluation studies.  相似文献   

14.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

15.
The sustainability of cropping systems can be increased by introducing a cover crop, provided that the cover crop does not reduce the cash crop yield through competition. The cover crop may be sown at the same time as a cash crop in the crop rotation. We carried out an experiment in 1999–2000 and 2000–2001 in the Paris Basin, to analyze the effects of simultaneously sowing winter wheat (Triticum aestivum L.) and red fescue (Festuca rubra L.), a turf grass. Competition between wheat and fescue was analyzed with one variety of red fescue, Sunset, and two varieties of wheat, Isengrain and Scipion, each sown at a density of 150 plants m?2. In this study, we evaluated the effect of undersown fescue on wheat yield and analyzed the competition between the two species in detail. The undersown red fescue decreased wheat yield by about 12% for Isengrain (8.7 t ha?1 for undersown Isengrain versus 9.8 t ha?1 for Isengrain alone) and 7% for Scipion (7.4 t ha?1 for undersown Scipion versus 8.0 t ha?1 for Scipion alone). During the early stages of wheat growth (up to the ‘1 cm ear’ stage, corresponding to stage 30 on Zadoks’ scale), undersown fescue and fescue sown alone grew similarly. However, fescue biomass levels were much lower (5.6 and 4.7 g m?2 for fescue grown alone and undersown fescue) than wheat biomass levels on the undersown plots (120 g m?2 for Isengrain and 111 g m?2 for Scipion). From the e1 stage onwards, the wheat canopy rapidly extended, whereas that of red fescue remained sparse. The time lag between the beginning of the rapid increase in LAI and PAR interception by wheat grown alone and that for fescue grown alone was 590 dd in the second year. This resulted in much slower growth rates for undersown fescue than for undersown wheat. Biomass production rate was therefore low for undersown fescue (12% those of fescue grown alone, on average, at the time of wheat harvest), as were levels of water and nitrogen use. Neither the water deficit that occurred during the second experiment nor the nitrogen nutrition status of the wheat on plots with undersown fescue significantly affected wheat biomass production after anthesis.The global interception efficiency index IG?i indicated that the fraction of the PARo intercepted by the wheat during its growth (255 days) was 0.35.  相似文献   

16.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

17.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

18.
《Field Crops Research》2006,95(2-3):135-155
A field study was carried out over 4 years at one site in the Low Po Valley, Northern Italy, to examine the effect of various levels of pig slurry applications on alfalfa (Medicago sativa L.) productivity, solar radiation utilization, and nutrient removal. Treatments consisted of three liquid pig manure rates, estimated to provide in total 300, 450 and 600 kg N ha−1 year−1 (PS300, PS450, PS600, respectively), and one unfertilized control (named as Control). Treatments were applied on the second and third year of crop stand (1994 and 1995), whilst during the subsequent fourth and fifth years of crop stand (1996 and 1997) the residual effects of previous treatments were investigated. Regardless of crop age and year-to-year variability, pig slurry tended to increase annual forage production during the 2 years of fertilization and the subsequent biennium of stand duration. Overall, the forage dry matter production, accumulated over four growing seasons and 17 cuts, was 39 000 kg ha−1 for the Control, 44 500 kg ha−1 (+14%) for PS300, to 49 800 kg ha−1 (+28%) for PS450 and 45 800 kg ha−1 (+17%) for PS600. Nitrogen concentration in shoot dry matter was not influenced by the treatment applied. P concentration, on the other hand, was substantially increased by all three rates of pig slurry application, with an evident residual effect observed during the last 2 years of crop stand. However, the evident increase of P availability, assured by pig slurry fertilization, resulted in most of cases in luxury consumption of P by the crop plant. A strong linear relationship was found between cumulative forage dry matter and accumulated incident global solar radiation. Pig slurry fertilization increased significantly the slope of the regressions with respect to the Control. Since enhanced N and P availability may reduce the carbon costs for sustaining root nodules and symbiotic organisms, it seems likely that the crop plant must gain advantage in terms of dry matter produced per unit of radiation intercepted. However, further research is needed to clarify whether the effect of manure is attributable to improved alfalfa efficiency in converting intercepted solar energy into forage dry matter, to enhanced canopy cover thus higher radiation capture per unit of soil area, or to a combination of both mechanisms.  相似文献   

19.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

20.
《Field Crops Research》2006,95(2-3):103-114
The Apulia region in Southern Italy is an important area for sugar beet cultivation. It is characterised by clay soils and a hot-arid and winter-temperate climate. The capability of sugar beet to exploit solar radiation, water use and irrigation supply in root yield, total dry matter and sucrose production was studied and analysed in relation to two experimental factors: sowing date – autumn (October–December) and spring (March) – and irrigation regime – optimal and reduced (respectively with 100 and 60% of actual evapotranspiration). Data sets from three experiments of spring sowing and three of autumn sowing were used to calculate: (1) water use efficiency in the conversion in dry matter (WUEdm, plant dry matter at harvest versus seasonal water use ratio), in sucrose (WUEsuc, sucrose yield versus seasonal water use ratio); (2) irrigation water use efficiency in the conversion in dry matter (IRRWUEdm), in sucrose (IRRWUEsuc) and fresh root yield (IRRWUEfr); and (3) radiation use efficiency (RUE, plant dry matter during the crop cycle and at harvest versus intercepted solar radiation ratio).Autumnal beet was more productive than spring for fresh root, plant total dry matter, sucrose yield and concentration; also WUEsuc and IRRWUEs were higher in the autumnal sugar beet, but no difference was observed in WUEdm (on average, 2.83 g of dry matter kg−1 of water used). An average saving of about 26% of seasonal irrigation supply (equivalent to about 100 mm) was measured in the three years with the earliest sowing time. The optimal irrigation regime produced higher root yield, plant total dry matter and sucrose yield than the reduced one; on the contrary the IRRWUEfr and IRRWUEdm were higher in the reduced irrigation strategy. WUEs and IRRUWEs correlated positively with the length of crop cycle, expressed in growth degree days and, in particular, to the length of the period from full soil cover canopy to crop harvest, the period when plant photosynthetic activity and sucrose accumulation are at maximum rates. Seasonal RUE was higher in the spring than in the autumn sowing (1.14 μg J−1 versus 1.00 μg J−1). The RUE values during the crop cycle reached the maximum in the period around complete canopy soil cover. The results showed the importance for better use of water and radiation resources of autumnal sowing time and of reduced irrigation regime in sugar beet cropped in a Mediterranean environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号