首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The genetic control determining the days to flowering, defined as the number of days from emergence to the beginning of flowering is considered an important characteristic for breeding purpose. We investigated this factor in kenaf (Hibiscus cannabinus L.), as part of an agroindustrial project in northwest Argentina. A diallelic cross approach was considered in this study. Six highly inbred photosensitive cultivars were used in the cross, namely, Endora, Pandora, Tainung 1, Line 42, Line 21, and Line 29. Significant differences among F1 family means as well as among general combining ability (GCA) and specific combining ability (SCA) components were found based on the Griffing genetic-statistical method IV, Model 1. A predominant additive effect was detected for the days to flowering, giving high heritability estimates (H = DGD = 0.96; h2 = 0.69), and suggests the possibility of effective selection for earliness in these cultivars. Early flowering in Line 29 was highly heritable, and therefore, is important for breeding purposes. Line 42, despite being the earliest, did not transmit this characteristic to its progenies, possibly because of epistatic genetic effects. The regression of the covariances of F1 families on the non-recurrent parent (Wr) and the variance of the “n” families (Vr) revealed that some dominance effects also occurred in the form of a partial dominance for early flowering. These results support the evidences revealed by the analysis of means of combinations between early and late flowering lines.  相似文献   

2.
《Field Crops Research》2001,70(2):89-100
Examining physiological relationships that quantify the processes of interception of radiation and biomass accumulation and partitioning provide one avenue for understanding limits to pigeonpea productivity. The radiation extinction coefficient (k), radiation use efficiency (RUE), partitioning of biomass between leaf and stem before flowering, and the rate of linear increase in harvest index (HI) during pod-filling were determined for nine cultivars in water and nutrient non-limiting conditions at ICRISAT Centre, Patancheru, India. The nine cultivars comprised three each from the cultivar duration classes extra-short (100 days to maturity), short (115 days) and medium (170 days). Values of k and RUE were consistent across duration groups, with mean values of 0.53 and ca. 0.9 g MJ−1, respectively. RUE remained at its maximum value almost until maturity. Partitioning between leaf and stem prior to flowering was also consistent across groups, in the ratio of 1:1.03 to 1:1.14. The rate of linear increase in HI and final HI varied across groups, with lower rates of partitioning to grain and final HI in the later maturing groups. When adjusted for fallen leaf, the HI increase was ca. 0.08, 0.075 and 0.04 per day, and maximum HI was ca. 0.35, 0.32 and 0.19 for extra-short, short and medium-duration groups, respectively. The association of lower HI increase with indeterminate growth provides a convenient framework to simulate concurrent reproductive and vegetative growth during pod-filling.  相似文献   

3.
《Field Crops Research》2006,98(1):20-29
Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different ‘environments’. Average air and soil temperatures of 28–34 °C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r2 = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r2 = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r2 = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments.  相似文献   

4.
《Field Crops Research》2004,89(1):17-25
The pigeonpea (Cajanus cajan (L.) Millsp.) crop retains appreciable amounts of green foliage even after reaching physiological maturity, which if allowed to defoliate, could augment the residual benefit of pigeonpea to the following wheat (Triticum aestivum L.) in a pigeonpea–wheat rotation. The effect of addition of leaves present on mature pigeonpea crop to the soil was examined on the following wheat during the 1999/2000 growing season at Patancheru (17°4′N, 78°2′E) and during the 2001–2003 growing seasons at Modipuram (29°4′N, 77°8′E). At Patancheru, an extra-short-duration pigeonpea cultivar ICPL 88039 was defoliated manually and using foliar sprays of 10% urea (30 kg/ha) and compared with a millet (Pennisetum glaucum (L.) R.Br.) crop, naturally senesced leaf residue and no-leaf residue controls. At Modipuram, the effect of 10% urea spray treatment on mature ICPL 88039 was compared with the unsprayed control. At both locations, the rainy season crops were followed by a wheat cultivar UP 2338 at four nitrogen levels applied in a split plot design, which at Patancheru were 0, 30, 90 and 120 kg N ha−1 and at Modipuram 0, 60, 120 and 180 kg N ha−1. At Patancheru, urea spray added 0.5 t ha−1 of extra leaf litter to the soil within a week without significantly affecting pigeonpea yield. This treatment, however, increased mean wheat yield by 29% from 2.4 t ha−1 in the no-leaf residue pigeonpea or pearl millet plots to 3.1 t ha−1. At Modipuram, the foliar sprays of urea added more leaf litter to the soil than at Patancheru. Here, increase in subsequent wheat yield due to additional pigeonpea leaf litter was 7–8% and net profit 21% more than in the unsprayed control. The addition of pigeonpea leaf litter to the soil resulted in a saving of 40–60 kg N for the following wheat crops in both the environments. The results demonstrated that pigeonpea leaf litter could play an important role in the fertilizer N economy in wheat. The urea spray at maturity of the standing pigeonpea crop significantly improved this contribution in increasing wheat yield, the effect of which was additional to the amount of urea used for inducing defoliation. The practice, if adopted by farmers, may enhance sustainability of wheat production system in an environmentally friendly way, as it could reduce the amount of fertilizer N application to soil and enhance wheat yield.  相似文献   

5.
Changes in fatty acids were studied during maturation of coriander (Coriandrum sativum L.) fruits cultivated in the North-East of Tunisia (Charfine). The fruits matured in 55 days after flowering (DAF). Oil and petroselinic acid synthesis proceeded at a steady rate up to 32 DAF. The first results showed a rapid oil accumulation started at newly formed fruits (9.6 ± 0.2%) and continued until their full maturity (26.4 ± 0.5%). During fruit maturation, fatty acid profiles varied significantly among the nine stages of maturity. At the 32th DAF, palmitoleic, gadoleic, erucic and docosahexenoic acids were not detected and petroselinic acid had a highest amount (84.8 ± 4.5%). Fruits development resulted mainly in an increase of petroselinic acid and a decrease of palmitic acid (C16:0). At full maturity, the main fatty acids were petroselinic acid (80.9 ± 5.7%), followed by linoleic (13.6 ± 2.9%), palmitic (3.6 ± 0.1%) and stearic (0.7 ± 0.1%) acids. Saturated and polyunsaturated fatty acids decreased significantly and monounsaturated fatty acids increased during maturation of coriander fruit. Coriander fruits at the first four stages of maturity have a healthy nutritional value and the last five stages were with important economic and industrial applications. Results of this study indicate that the variation in the fatty acid composition of coriander fruit during maturation may be useful in understanding the source of nutritionally and industrially important fatty acids in this fruit. Coriander fruit is potentially an important source of petroselinic acid which has numerous industrial applications.  相似文献   

6.
To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize.  相似文献   

7.
8.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

9.
《Field Crops Research》2006,97(1):43-52
Traditionally, upland rice is grown in Asia in low-input, subsistence systems. More productive upland systems, using more fertilizer and improved varieties, are emerging in China and Philippines, and could contribute to productivity increases in rainfed environments in other countries. Here, we evaluate, on-station and on-farm, the yield under upland management of improved indica upland cultivars selected for yield under high-fertility conditions. These cultivars are compared with traditional and improved tropical japonica upland varieties, and with elite indica high-yielding varieties (HYV) developed for irrigated lowland production, to characterize the features of varieties that produce high yields in favorable upland environments. Forty-four improved and traditional varieties and experimental lines were evaluated in irrigated lowland, non-stressed upland, moderately stressed upland, severely water-stressed upland, and low-fertility upland environments in southern Luzon, Philippines. Correlations between yields in non-stress and mild-stress environments were low but positive. Some cultivars, like IR55423-01, were among the highest yielding under both conditions, indicating that high yield and moderate water-stress tolerance can be combined. Upland-selected indica varieties yielded 3.56 t ha−1 in favorable upland environments on-station in southern Luzon, outperforming improved tropical japonica and irrigated varieties by 23 and 69%, respectively. They were also the highest-yielding class in infertile, acid soils. The improved upland indica cultivars are about 110 cm tall under favorable upland conditions and maintain a harvest index of nearly 0.4, or about one-third higher than other cultivar types. The best upland-adapted rice varieties produced average yields on-farm of 3.3 and 4.1 t ha−1 in southern Luzon and Yunnan, respectively, outyielding traditional checks by 30–50% with moderate N application. Screening under both high-fertility, non-stress conditions and moderate reproductive-stage stress appears to be needed to develop cultivars combining high-yield potential with drought tolerance. Upland-adapted indica cultivars offer a new approach to increasing productivity and reducing risk in Asian rainfed rice systems.  相似文献   

10.
《Field Crops Research》2006,95(2-3):316-326
Maize (Zea mays L.) kernel weight (KW) response to changes in assimilate availability per kernel during grain filling suggests that plants establish an early kernel sink potential that place them to grow close to a saturating assimilate availability condition during late grain-filling, meaning source limitations are common only early in kernel development. As maize reproductive efficiency in kernel set is not constant across different plant growth rates (PGR) around flowering, we used PGR per kernel during this period as an indicator of source availability per kernel. We tested whether PGR per kernel during flowering or during the effective grain-filling period were correlated to genotypic and environmental differences in final KW. Plant growth rate during both periods, KW, kernel growth rate during the effective grain-filling period, total duration of grain filling and kernel number per plant were measured in 12 commercial genotypes differing in KW sown at two sites under full irrigation. As expected from the curvilinear response relating kernel number per plant and PGR around flowering, increased PGRs resulted in higher PGR per kernel around this period (r2 = 0.86; p < 0.001). Differences in final KW due to genotypes or environments were significantly explained by the PGR per kernel around flowering (r2 = 0.40; p < 0.001), and not by the PGR per kernel during the effective grain-filling period. Genotypes differed in kernel growth rate (p < 0.001) and grain-filling duration (p < 0.001). The former was well explained by PGR per kernel around flowering (r2 = 0.66; p < 0.001), but showed no relationship with the PGR per kernel during the effective grain-filling period. Grain-filling duration was partially explained (r2 = 0.27; p < 0.01) by the ratio between PGR per kernel during the effective grain-filling period and kernel growth rate, but differences in duration were negligible compared to those observed in the ratio (∼41% versus ∼130%, respectively). Together, these results support the importance of source availability per kernel during early grain filling on the determination of maize potential sink capacity and final KW. Early resource availability per kernel was accurately estimated as PGR per kernel around the period of kernel number determination, which helped explain genotypic and environmental differences in maize final KW as well as in kernel growth rate.  相似文献   

11.
《Field Crops Research》1999,64(3):287-291
Osmotic adjustment (OA) is generally considered an important component of drought resistance. Several reports by J.M. Morgan [Morgan, J.M., 1983. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust. J. Agric. Res. 34, 607–614; 1992. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Aust. J. Plant Physiol. 19, 67–76; 1995. Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Res. 40, 143–152; Morgan, J.M., Condon, A.G., 1986. Water-use, grain yield and osmoregulation in wheat. Aust. J. Plant Physiol. 13, 523–532] from Australia concluded that consistent genetic differences in OA existed among wheat cultivars and that high OA cultivars tended to yield better than low OA cultivars under drought stress. Our study was performed to assess his results with his and other genetic materials.Two of Morgan’s spring wheat lines with high OA (‘H.Osm-134’) and low OA (‘L.Osm-136’) capacity in addition to eight other diverse spring wheat cultivars were tested for OA and plant production when grown in small plots under a rain exclusion shelter at Bet Dagan, Israel in 1996. OA of five of these cultivars (including Morgan’s lines) was also measured in two independent greenhouse tests in 1997 (Israel) and 1998 (Texas).The five cultivars differed significantly and ranked consistently for OA in all tests. No significant cultivar by test interaction for OA was revealed. OA was well correlated across cultivars between tests. The significantly higher OA capacity of H.Osm-134 as compared with L.Osm-136 was repeated in all tests. OA of all ten cultivars was positively correlated with biomass (r = 0.73; p = 0.02) and yield (r = 0.55; p = 0.09) under pre-flowering drought stress in the rain exclusion shelter. H.Osm-134 line performed significantly (p  0.05) better than L.Osm-136 line for both biomass and yield under drought stress. We therefore support Morgan’s results and conclude that consistent differences in OA exist among wheat cultivars and that these differences can be associated with plant production under pre-flowering drought stress.  相似文献   

12.
《Field Crops Research》2006,96(1):125-132
The late-season foliar application of urea may increase yield and grain quality of wheat (Triticum aestivum L.). Limited information is available regarding the effect of late urea spraying on the performance of wheat cultivars under various basal N fertilization rates. Field experiments were conducted during 2000 through 2002 to evaluate the responses of six winter wheat cultivars to foliar urea (30 kg N ha−1) treatment around flowering at low (67 kg N ha−1) and high (194 kg N ha−1) basal N fertilization rates. Following urea spraying at low N rate, all cultivars increased grain yields to a similar extent (by an average of 7.8% or 509 kg ha−1) primarily due to an increase in the 1000-kernel weight. No yield response to the late-season urea treatment occurred at high basal N rate where grain yields averaged 24.9% (1680 kg ha−1) higher than those at low N rate. In contrast, late foliar urea application similarly improved grain quality at both low and high N rates by an average of 5 g kg−1 (4.5%) for protein content, 3.2 cm3 (11.9%) for Zeleny sedimentation, and 20 g kg−1 (8.6%) for wet gluten. These quality increments were consistent in all growing seasons regardless of significant variations in grain yields and protein concentrations across years. However, most cultivars failed to achieve breadmaking standards at low N rate as quality increments associated with the urea treatment were relatively small when compared to those achieved by high basal N rate. Late urea spraying had no effect on the falling number, whereas some cultivars showed small, but significant reduction in the gluten index at both N rates. Cultivars improved the hectolitre weight with the late-season urea treatment only at low N rate. Significant cultivar × urea interactions existed for most quality traits, which were due to the cultivar differences in the magnitude of responses. Thus, late-season urea spraying consistently produced larger yields at low basal N rate, and resulted in cultivar-dependent increases in protein content, Zeleny sedimentation, and wet gluten at both low and high N rates.  相似文献   

13.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata f. silenoides W.T. Aiton, line PSR23) is a new crop being developed in the North Central United States, as an industrial oilseed crop. Cuphea PSR23 seed oil is rich in medium-chain-length fatty acids such as capric acid used to manufacture soaps and detergents. The objective of this research was to determine the time when physiological maturity of cuphea seed is reached and how seed development affects seed moisture, weight, oil content, fatty acid content, germination, and seedling vigor. To evaluate seed development, 2000 cuphea flowers were tagged at anthesis in the field at Prosper, North Dakota in 2004 and 2005. Each flower was tagged when open and the position on the main stem or branch was recorded. Two hundred capsules from the tagged flowers were harvested at 3- to 4-d intervals from 5- to 48-d post anthesis (DPA). Seed weight increased as a function of growing degree days (GDD) and the days from anthesis. Physiological maturity occurred when maximum dry seed weight was attained. Seed weight increases followed the Gompertz function with a R2 = 0.90 (2004) and R2 = 0.95 (2005). All capsules, regardless of their position on the stem, followed the same growth function for seed weight. The maximum dry seed weight estimated by the Gompertz function was 3.61 for 2004 and 3.58 mg seed−1 for 2005. Physiological maturity estimated with a quadratic function occurred at 38 DPA or 270 GDD in 2004. In 2005, physiological maturity occurred at 26 DPA or 265 GDD. As a visual indicator when the capsules split-open seeds inside that capsule are physiologically mature. Seed moisture decreased from 900 g kg−1 at 37 GDD post anthesis to 450 g kg−1 at 319 GDD post anthesis in 2004; however, in 2005 seed moisture decreased from 850 to 81 g kg−1 at 293 GDD post anthesis. Seed germination increased as seed developed and it was 83% when harvested 234 GDD post anthesis. Oil content increased from 98 g kg−1 at 37 GDD post anthesis to 279 g kg−1 319 GDD post anthesis. Fatty acid composition varied throughout seed development. Seed development for 111 GDD and greater had more than 66% of capric acid (10:0). Cuphea should be harvested after 265 GDD post anthesis when most capsules on the main stem are split-open, have attained maximum seed weight, germination, seedling vigor, and oil content.  相似文献   

14.
《Field Crops Research》2006,99(1):67-74
An inverse relationship between soybean [Glycine max (L.) Merr.] seed protein and oil concentration is well documented in the literature. A negative correlation between protein and yield is also often reported. The objective of this study was to determine the effect of high rates of N applied at planting on seed protein and oil. Nitrogen was surface-applied at soybean emergence at rates of 290 kg ha−1 in 2002, 310 kg ha−1 in 2003, and 360 kg ha−1 in 2004. Eight cultivars ranging from Maturity Group II–IV were evaluated under the Early Soybean Production System (ESPS). However, not all cultivars were evaluated in all 3 years. Glyphosate herbicide was used in all 3 years and a non-glyphosate herbicide treatment was applied in 2002. Cultivars grown in 2003 were also evaluated under an application of 21.3 kg ha−1 of Mn. All cultivar, herbicide, and Mn treatments were evaluated in irrigated and non-irrigated environments with fertilizer N (PlusN treatment) or without fertilizer N (ZeroN treatment). When analyzed over all management practices (years, cultivars, herbicide, and Mn treatments), the PlusN treatment resulted in a significant decrease in protein concentration (2.7 and 1.9%), an increase in oil concentration (2.2 and 2.7%), and a decrease in the protein/oil ratio (4.7 and 4.6%) for the irrigated and non-irrigated environments, respectively. However, the overall protein and oil yield increased with the application of fertilizer N at planting (protein: 5.0% irrigated, 12.7% non-irrigated and oil: 9.9% irrigated and 18.9% non-irrigated). These increases were due to the increase in seed yield with the application of large amounts of fertilizer at planting. Additionally, a significant correlation (r = 0.45, P = 0.0001) was found between seed protein concentration and seed yield. No significant correlation was found between seed oil concentration and seed yield. The data demonstrate the inverse relationship between protein and oil and indicate that large amounts of N applied at planting do not change this relationship.  相似文献   

15.
《Field Crops Research》2006,95(2-3):156-170
Sugarcane (Saccharum spp.) is grown across different production environments and is harvested over a 5-month (mid-October–mid-March) period in Florida. While many studies have examined genotype × environment interactions and their implications for breeding program design, knowledge is limited regarding interactions of genotype, environment and time of harvest and their implications for growers. Three non-confounded data sets (“case studies”) were analyzed to determine the effects of these three factors on kilograms of sugar per ton (KST), tons of cane per hectare (TCH) and tons of sugar per hectare (TSH) for recently released cultivars in south Florida. Cultivar (genotype), environment, time of harvest and their interactions had significant effects on KST, TCH and TSH. Sugarcane KST and TSH were reduced by 28 and 29%, respectively, when harvested in mid-October compared to optimum harvest dates in February. TSH varied from 2 to 46% across environments. The Lakeview “warmland” site near Lake Okeechobee recorded significantly higher TCH and TSH than other sites, and cultivars CP88-1508 and CP88-1834 recorded higher relative yields at Lakeview. Cultivar TSH varied up to 51% across the case studies. CP89-2143 had significantly higher KST than other cultivars in all 21 pairwise comparisons in the three case studies, and a remarkably high, stable KST ranking across environments. Growers in the Everglades Agricultural Area interested in improving sugarcane crop sucrose concentration should plant CP89-2143. However, significant genotype × environment interactions for other cultivars support continued multi-locational evaluation of sugarcane germplasm both during the breeding program and following cultivar release.  相似文献   

16.
Lesquerella fendleri (Gray) Wats. is a potential new oilseed crop for the arid southwestern United States. Lesquerella seed oil with similar properties as castor oil is being considered as a domestic replacement for the imported castor oil. Development of new crops with low irrigation needs is of high priority. Because the most critical stage of sensitivity to moisture deficits has not been determined in Lesquerella species, the objectives of this study were: (i) to identify the most critical stage or stages for moisture deficit and, (ii) to determine the effect of moisture deficit on yield, yield components, oil and fatty acid composition. Two-year field studies were conducted at the New Mexico State University, Leyendecker Plant Science Research Center. The experimental design was a randomized complete block. The treatments consisted of (a) T1: Continuous favorable soil moisture [irrigated at 50% soil water depletion (SWD)]. (b) T2: Moisture stress (75% SWD) from establishment to initial flowering with no stress from flowering to final harvest (50% SWD). (c) T3: No stress imposed from establishment to initial flowering (50% SWD) followed by stress to final harvest (75% SWD). (d) T4: Moisture stress (75% SWD) from establishment to final harvest. The amount of water applied ranged from 810 to 729 mm for the first year, and 810 to 625 mm for the second year. Seed weight per plant and number of pods per plant were generally higher when water availability was maintained at or above 50% SWD throughout the growing season. Neither seed number per pod nor seed size was influenced by irrigation treatments. Lesquerella was more sensitive to water availability during flowering and seed development as a greater loss in seed yield occurred when irrigation was delayed to 75% SWD during that stage of development. Seed yield and dry matter production from the 2 year field studies were closely related to the seasonal cumulative evapotranspiration. For each millimeter of evapotranspiration, seed yield increased from 1.8 kg ha−1 mm in 1994–1995 to 1.3 kg ha−1 mm for 1995–1996. The dry matter production increased 13.4 kg ha−1 for each mm increase in seasonal evapotranspiration during 1994–1995. This relationship was a second order polynomial with an R2 of 0.86 during 1995–1996. The WUEgr and WUEdm were highest under the most favorable water availability conditions for growth and seed development. Delaying irrigation to 75% SWD throughout the crop growth period resulted in the lowest oil content. Lesquerolic acid content was not affected by irrigation during both the growing seasons.  相似文献   

17.
In this study, 120–144 commercial varieties and breeding lines were assessed for grain size attributes including plump grain (>2.8 mm) and retention (>2.5 mm+>2.8 mm). Grain samples were produced from replicated trials at 25 sites across four years. Climatic conditions varied between years as well as between sites. Several of the trial sites were irrigated while the remaining were produced under dryland conditions. A number of the dryland sites suffered severe drought stress. The grain size data was analysed for genetic (G), environmental (E) and genotype by environment (G×E) interactions. All analyses included maturity as a covariate. The genetic effect on grain size was greater than environmental or maturity effects despite some sites suffering terminal moisture stress. The model was used to calculate heritability values for each site used in the study. These values ranged from 89 to 98% for plump grain and 88 to 96% for retention. The results demonstrated that removing the sources of non-heritable variation, such as maturity and field effects, can improve genetic estimates of the retention and plump grain fractions. By partitioning all variance components, and thereby having more robust estimates of genetic differences, plant breeders can have greater confidence in selecting barley genotypes which maintain large, stable grain size across a range of environments.  相似文献   

18.
《Field Crops Research》2006,96(1):90-97
Low native nitrogen (N) and phosphorus (P) coupled with imbalanced nutrient application is a major constraint limiting productivity of intercropping systems on Vertisols of the semi-arid tropical India. In a 3-year field experiment competition behaviour of component crops for nutrients use in soybean/pigeonpea intercropping system was assessed based on relative yield (RY), relative nitrogen yield (RNY) and relative phosphorus yield (RPY) under three nutrient levels (0 NPK, 100% NPK (N:P:K = 30:26:25 kg ha−1) and 100% NPK + 4 t FYM ha−1). The result showed that before soybean harvest, the RY and RNY of soybean were greater (1.0) than the corresponding values of RY and RNY of pigeon pea (0.6). This implied that competition exists for soil N between the component crops during the first half of the cropping system. It was observed that soybean harvest did not coincide with peak flowering of pigeonpea, the stage when biological nitrogen fixation (BNF) was maximum. Thus, BNF dependency of pigeonpea was low before soybean harvest and the plants suffered from N deficiency more when no fertilizer-N was applied and diminished at a high-N level. Pigeon pea attained its peak flowering after the harvest of soybean and increased its dependency on BNF when soil N was exhausted by soybean. Thus, after the harvest of soybean, RY and RNY of pigeon pea gradually increased and approached 1.0 at maturity at all nutrient levels. The RPY values showed that phosphorus was not the limiting factor to any of the crop in the system even if it was not applied. The study thus suggests that in the soybean/pigeonpea intercropping system, N is a limiting factor for growth of pigeonpea intercrop during the first half of its growth and application of 100% NPK (30 kg N) + 4 t FYM could meet N demand of pigeonpea in N deficient soils as this nutrient management option gave higher yield, root length density and profit under soybean/pigeonpea intercropping system than 100% NPK and control.  相似文献   

19.
Field studies were conducted to determine the potential for intraspecific responses in crop growth and grain yield of 20 soybean cultivars to enhanced ultraviolet-B (UV-B, 280–315 nm) radiation. The supplemental UV-B radiation was 5.00 kJ m−2, simulating a depletion of 20% stratospheric ozone at Kunming (25°N, 1950 m). Out of the 20 soybean cultivars tested, 17 and 15 showed significant change in plant height at 80 DAP (days after planting) and ripening stages, respectively. Sensitivity in plant height was greater at 80 DAP than at ripening. The plant height of 3 cultivars increased, and that of 17 cultivars decreased. Under UV-B radiation, LAI (leaf area index), biomass and grain yield decreased, respectively. The greatest percent decrease was 95.7, 93.9 and 92.8, respectively. RI (response index) was the sum of percent change in plant height at ripening, LAI, biomass and grain yield. The results showed that all 20 soybean cultivars had a negative RI, indicating inhibition by UV-B radiation on soybean growth. The RI of 6 tolerant cultivars was higher than −163.1 and 5 out of 6 originated from south China (low latitude). The RI of the most tolerant cultivars, Yunnan 97801, was −72.4. Meanwhile, the RI of 5 sensitive cultivars was lower than −256.9 and 4 out of the 5 originated from north China (high latitude). The RI of the most sensitive cultivar, Huanxianhuangdou, was −295.7. These UV-B tolerant cultivars identified in this study might be useful in breeding programs.  相似文献   

20.
《Field Crops Research》1999,63(1):19-34
Two modelling approaches were used to quantify photoperiod and temperature responses of time from emergence to visible flower buds in nine quinoa (Chenopodium quinoa Willd.) cultivars. The first, non-interactive model, considers temperature and photoperiod responses as independent, and the threshold photoperiod, critical photoperiod, and base temperatures as constants. The second, interactive model, considers these attributes as variable, and allows for interaction between photoperiod and temperature responses. Controlled-environment experiments with a factorial combination of temperature and photoperiod provided information on responses, and data from field experiments were utilized in tests of the predictive capacity of the models.The two models were very similar in their goodness of fit and predictive capacity, but testing revealed that some assumptions about the interactive model were not fulfilled, whereas the non-interactive model is more consistent with the data. Both the models failed to predict dates of visible flower buds when average temperatures during the phase were >20°C; it is proposed that interaction between irradiance receipt and high temperature in controlled environments result in lower optimum temperatures there than in the field. Differences between field data and predicted values were eliminated when predictions were recalculated assuming no optimum for the temperature response.All nine cultivars examined are short-day plants. A juvenile sub-phase was observed in the six cultivars for which it was tested; and its duration was negatively associated with the latitude of origin of the lines (R2 = 0.9, p < 0.05). Photoperiod sensitivity was negatively associated with the latitude of origin of the lines (R2 = 0.55, p < 0.05) and positively associated with duration of the basic vegetative phase (minimal time between emergence and visible flower buds) (R2 = 0.55, p < 0.05) using the non-interactive model. Photoperiod and temperature response parameters were not significantly associated with the latitude of origin for the interactive model (p > 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号