首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

2.
This paper describes the use of satellite-based remote sensing (RS) data and geographic information system (GIS) tools for estimating seasonal crop evapotranspiration in Mahi Right Bank Canal (MRBC) command area of Gujarat, India. Crop coefficients (Kc) for various major crops grown in MRBC were estimated, empirically, from the RS derived soil adjusted vegetation index (SAVI) values. A reference crop evapotranspiration (ET0) map was generated from point meteorological observations. The Kc and ET0 maps were combined to generate seasonal crop evapotranspiration (ETcrop) map which highlighted spatial variation in ETcrop ranging from more than 600 mm for healthy tobacco crops to less than 150 mm for very poor wheat crops.  相似文献   

3.
The main purpose of this paper was to evaluate whether or not the dual crop coefficient (DCC) method proposed in FAO-56 was suitable for calculating the actual daily evapotranspiration of the main crops (winter wheat and summer maize) in the North China Plain (NCP). The results were evaluated with the data measured by the large-scale weighing lysimeter at the Yucheng Comprehensive Experimental Station (YCES) of the Chinese Academy of Sciences (CAS) from 1998 to 2005 using the Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE) and the root mean square error to observations’ standard deviation ratio (RSR). The evaluation results showed that the DCC method performed effective in simulating the quantity of seasonal evapotranspiration for winter wheat but was inaccurate in calculating the peak values. The RMSE value of the winter wheat during the total growing season was less than 0.9 mm/d, the NSE and RSR values during the total growing stage were “Very Good”, but the results for summer maize were “Unsatisfactory”. The recommended basal crop coefficient values Kcbtab during the initial, mid-season and end stages for winter wheat and summer maize were modified and the variation scope of basal crop coefficient Kcb was analyzed. The Kc (compositive crop coefficient, Kc = ETc/ET0, ETc here is the observed values by lysimeter, ET0 is the reference evapotranspiration) values were estimated using observed weighing lysimeter data during the corresponding stages for winter wheat and summer maize were 0.80, 1.15, 1.25, 0.95; 0.90, 0.95, 1.25, 1.00, respectively. These can be a reference for irrigation planning.  相似文献   

4.
Water shortage is the major bottleneck that limits sustainable development of agriculture in north China. Crop physiological water-saving irrigation methods such as temporal (regulated deficit irrigation) and spatial (partial root zone irrigation) deficit irrigation have been tested with much improved crop water use efficiency (WUE) without significant yield reduction. Field experiments were conducted to investigate the effect of (1) spatial deficit irrigation on spring maize in arid Inland River Basin of northwest China during 1997–2000; (2) temporal deficit irrigation on winter wheat in semi-arid Haihe River Basin during 2003–2007 and (3) temporal deficit irrigation on winter wheat and summer maize in Yellow River Basin during 2006–2007. Results showed that alternate furrow irrigation (AFI) maintained similar photosynthetic rate (Pn) but reduced transpiration rate (Tr), and thus increased leaf WUE of maize. It also showed that the improved WUE might only be gained for AFI under less water amount per irrigation. The feasible irrigation cycle is 7d in the extremely arid condition in Inner River Basin of northwest China and less water amount with more irrigation frequency is better for both grain yield and WUE in semi-arid Haihe River Basin of north China. Field experiment in Yellow River Basin of north China also suggests that mild water deficit at early seedling stage is beneficial for grain yield and WUE of summer maize, and the deficit timing and severity should be modulated according to the drought tolerance of different crop varieties. The economical evapotranspiration for winter wheat in Haihe River Basin, summer maize in Yellow River Basin of north China and spring maize in Inland River Basin of northwest China are 420.0 mm, 432.5 mm and 450.0 mm respectively. Our study in the three regions in recent decade also showed that AFI should be a useful water-saving irrigation method for wide-spaced cereals in arid region, but mild water deficit in earlier stage might be a practical irrigation strategy for close-planting cereals. Application of such temporal and spatial deficit irrigation in field-grown crops has greater potential in saving water, maintaining economic yield and improving WUE.  相似文献   

5.
Grapevines are extensively grown in the arid region of China, but little information is available on the diurnal, seasonal and interannual variability of vineyard evapotranspiration (ET). To address this question, two vineyards in the arid region of northwest China were taken as an example to study the variation of ET using Bowen ratio-energy balance method in 2005-2008. Results indicate that the Bowen ratio method provided accurate estimate of vineyard ET as the instrument was correctly installed. Irrigation and rainfall increased daily ET by 38 and 175%, respectively, but frost decreased it by 32%. Daily ET had a maximum value of 1.6-3.5 mm/d at the berry development stage, and a minimum value of 0.8-1.7 mm/d at the early and later stages. The total ET was 226-399 mm over the growing season. The ratio of transpiration to evapotranspiration was 0.52 and the modified crop coefficient (Kcm) was 0.71-0.88 (except 2005) over the whole growing stage. Larger interannual difference of ET and Kcm mainly resulted from the difference of irrigation and rainfall between different years.  相似文献   

6.
The reference crop evapotranspiration (ETr) for four areas in Saudi Arabia was estimated using five different methods: FAO-Penman, Jensen-Haise, Blaney & Criddle, pan evaporation, and calibrated FAO-Penman under local conditions (Penman-SA). Comparison was also made between the estimated ETr and the measured ETr of alfalfa grown in lysimeters in the Riyadh area. Regression analysis revealed that estimated ETr values were highly correlated with measured ETr values. In addition, linear regression relationships between ETr values estimated by the Penman-SA method and other methods were determined. The results of this study indicated that the calibrated Penman-SA method can be transferred successfully to other locations, and this method could be used for the estimation of ETr values in all areas in the southern region of Saudi Arabia. Received: 16 January 1998  相似文献   

7.
Irrigation scheduling based on the daily historical crop evapotranspiration (ETh) data was theoretically and experimentally assessed for the major soil-grown greenhouse horticultural crops on the Almería coast in order to improve irrigation efficiency. Overall, the simulated seasonal ETh values for different crop cycles from 41 greenhouses were not significantly different from the corresponding values of real-time crop evapotranspiration (ETc). Additionally, for the main greenhouse crops on the Almería coast, the simulated values of the maximum cumulative soil water deficit in each of the 15 consecutive growth cycles (1988–2002) were determined using simple soil-water balances comparing daily ETh and ETc values to schedule irrigation. In most cases, no soil-water deficits affecting greenhouse crop productivity were detected, but the few cases found led us to also assess experimentally the use of ETh for irrigation scheduling of greenhouse horticultural crops. The response of five greenhouse crops to water applications scheduled with daily estimates of ETh and ETc was evaluated in a typical enarenado soil. In tomato, fruit yield did not differ statistically between irrigation treatments, but the spring green bean irrigated using the ETh data presented lower yield than that irrigated using the ETc data. In the remaining experiments, the irrigation-management method based on ETh data was modified to consider the standard deviation of the inter-annual greenhouse reference ET. No differences between irrigation treatments were found for productivity of pepper, zucchini and melon crops.  相似文献   

8.
A trial was carried out at the lysimeter station in southern Italy on muskmelon crop cultivated with and without plastic mulch during spring–summer in 2001 and 2003. The objective of the experiment was to verify the reliability of the crop evapotranspiration (ETc) estimate by means of the most recent update of the FAO Irrigation and Drainage Paper 56, in comparison with ETc directly measured by two mechanical weighing lysimeters.Crop coefficients (Kc) were determined during different development stages based on lysimetric measures of ETc and of the reference evapotranspiration (ET0) estimated through the Penman Monteith and the Hargreaves methods. On melon crop cultivated without plastic mulch, corrected crop coefficients (Kc) following the last FAO Irrigation and Drainage Paper 56 procedures were well correlated with those measured from lysimeter and were as reliable as the ETc estimate. In contrast, values of Kc proposed by FAO Irrigation and Drainage Paper 56 for crops grown with plastic mulch were meaningfully lowers than those measured from lysimeter, loading to an underestimation of water consumption. On muskmelon, cultivated with and without plastic mulch, it is necessary to adapt development phase duration, suggested by the FAO Irrigation and Drainage Paper 56, to the real phenology of the employed cultivar. An adaptation of the phenology to the real duration of the single phases is essential to avoid error in the estimate of ETc.  相似文献   

9.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

10.
Growth and yield responses of developing almond trees (Prunus amygdalus, Ruby cultivar) to a range of trickle irrigation amounts were determined in 1985 through 1987 (the fifth through seventh year after planting) at the University of California's West Side Field Station in the semi-arid San Joaquin Valley. The treatments consisted of six levels of irrigation, ranging from 50 through 175% of the estimated crop evapotranspiration (ETc), applied to a clean-cultivated orchard using a line source trickle irrigation system with 6 emitters per tree. ETc was estimated as grass reference evapotranspiration (ET0) times a crop coefficient with adjustments based upon shaded area of trees and period during the growing season. Differential irrigation experiments prior to 1984 on the trees used in this study significantly influenced the initial trunk cross-section area and canopy size in the 50% ETc treatment and 125% ETc treatment. In these cases, treatment effects must be identified as relative effects rather than absolute. The soil of the experimental field was a Panoche clay loam (nonacid, thermic, Typic Torriorthents). The mean increase in trunk cross-sectional area for the 3-year period was a positive linear function (r 2 = 0.98) of total amounts of applied water. With increases in water application above the 50% ETc treatment, nut retention with respect to flower and fertile nut counts after flowering, was increased approximately 10%. In 1985 and 1987, the nut meat yields and mean kernel weights increased significantly with increasing water application from 50% to 150% ETc. Particularly in the higher water application treatments, crop consumptive use was difficult to quantify due to uncertainty in estimates of deep percolation and soil water uptake. Maintenance of leaf water potentials higher than –2.3 MPa during early nut development (March through May) and greater than –2.5 MPa the remainder of the irrigation season (through August) were positively correlated with sustained higher vegetative growth rates and higher nut yields.  相似文献   

11.
Crop coefficient methodologies are widely used to estimate actual crop evapotranspiration (ETc) for determining irrigation scheduling. Generalized crop coefficient curves presented in the literature are limited to providing estimates of ETc for “optimum” crop condition within a field, which often need to be modified for local conditions and cultural practices, as well as adjusted for the variations from normal crop and weather conditions that might occur during a given growing season. Consequently, the uncertainties associated with generalized crop coefficients can result in ETc estimates that are significantly different from actual ETc, which could ultimately contribute to poor irrigation water management. Some important crop properties such as percent cover and leaf area index have been modeled with various vegetation indices (VIs), providing a means to quantify real-time crop variations from remotely-sensed VI observations. Limited research has also shown that VIs can be used to estimate the basal crop coefficient (K cb) for several crops, including corn and cotton. The objective of this research was to develop a model for estimating K cb values from observations of the normalized difference vegetation index (NDVI) for spring wheat. The K cb data were derived from back-calculations of the FAO-56 dual crop coefficient procedures using field data obtained during two wheat experiments conducted during 1993–1994 and 1995–1996 in Maricopa, Arizona. The performance of the K cb model for estimating ETc was evaluated using data from a third wheat experiment in 1996–1997, also in Maricopa, Arizona. The K cb was modeled as a function of a normalized quantity for NDVI, using a third-order polynomial regression relationship (r 2=0.90, n=232). The estimated seasonal ETc for the 1996–1997 season agreed to within −33 mm (−5%) to 18 mm (3%) of measured ETc. However, the mean absolute percent difference between the estimated and measured daily ETc varied from 9% to 10%, which was similar to the 10% variation for K cb that was unexplained by NDVI. The preliminary evaluation suggests that remotely-sensed NDVI observations could provide real-time K cb estimates for determining the actual wheat ETc during the growing season.  相似文献   

12.
Drip irrigation of processing tomato is increasing in the San Joaquin Valley of California (USA), a major tomato production area. Efficient management of these irrigation systems requires reasonable estimates of crop evapotranspiration (ETc) between irrigations. A common approach for estimating ETc is to multiply a reference crop evapotranspiration (ETo) by a crop coefficient. However, a review of literature revealed mid-season crop coefficients for processing tomato to range from 1.05 to 1.25. Because of this variability, uncertainty exists in the crop coefficients appropriate for drip irrigation in the San Joaquin Valley. Thus, a study was initiated to determine the ETc of processing tomato for drip irrigation in commercial fields and then calculate crop coefficients from the ETc and ETo data for the west side of the San Joaquin Valley. Crop ETc was determined at five locations using the Bowen Ratio Energy Balance Method (BREB). Canopy coverage was also measured using a digital infrared camera. Average crop coefficients ranged from about 0.19 at 10% canopy coverage to 1.08 for canopy coverage exceeding about 90%. A second order regression equation reasonably described a relationship between crop coefficient and canopy coverage. Generic curves describing crop coefficient versus time of year were developed for various planting times.  相似文献   

13.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

14.
Furrow irrigation can be better managed if the management decision variables (irrigation time and amount; inflow rate and cutoff) can be determined ahead of time. In this study, these decision variables were forecast and optimized using 1 day ahead grass reference crop evapotranspiration (ET0) forecasts, based on the ARMA (1,1) time-series model, with a seasonal furrow irrigation model for both homogeneous and heterogeneous infiltration conditions. Heterogeneity in infiltration characteristics was restricted to variations along the furrow length as opposed to variations between furrows. The results obtained were compared with their counterparts using the observed ET0 for the same period during the 1992 cropping season. Seasonal performance (application efficiency, inflow, runoff and deep percolation volumes) and economic return to water (yield benefits minus seasonal water related and labor costs) were affected by infiltration conditions, while irrigation requirement and bean yield were unchanged. In a given infiltration case, seasonal performance, irrigation schedules, bean yield and economic return to water were comparable (lower than 4% difference) for the two ET0 conditions. For each ET0 condition, individual irrigation events resulted in different irrigation designs (inflow rate and cutoff time) except inflow rates with heterogeneous infiltration. Differences in inflow volume were less than 2% and 5%, respectively, for homogeneous infiltration and heterogeneous infiltration. For the conditions studied, furrow irrigation management decision variables can be forecast and optimized to better manage the irrigation system, because irrigation performance was the same for both (forecast and observed) ET0 cases. Received: 9 October 1999  相似文献   

15.
Accurate estimation of actual evapotranspiration (ETa) is essential for effective local or regional water management. At a local scale, ET estimates can be made accurately considering a soil-plant-atmospheric system, if adequate meteorological-ground data or ET measurements are available. However, at a regional scale, ETa values cannot be measured directly and the estimates are frequently subject to errors. Although it is possible to extrapolate to the regional scale from local (point) data of meteorological stations, the relative sparse coverage of ground estimate can make this problematic without some spatial analysis to demonstrate the similarity of the climate in the area. The introduction of remote sensing data and techniques offers alternatives both to estimate variables (i.e. radiation) and parameters (i.e. ET) with few spatial restrictions, thus, it provides potential advantages to the regional ETa computation. In particular, the use of remote sensing procedures like the surface energy balance-based algorithms (SEB) have been successfully applied in different climates, enabling the estimation of ETa at local and regional scales. A proper variation of the Surface Energy Balance Algorithm for Land (SEBAL) was applied to 4 years of data for the Flumen District in the Ebro Basin at the N.E. of Spain. Results obtained show that the remote sensing algorithm can provide accurate daily ETa estimations as compared with lysimeter measurements of daily ET values for two crop plots: one with a reference grass and other with maize or wheat as function of the season. Also a comparison between ETa and the reference and crop ET values applying the Penman-Monteith method was carried out. The comparison analysis consider an accepted error difference of 1.0 mm d−1 (20% of error) for local scale, the ETa values for the grass show a bias of 0.30 mm d−1 against the ETgrass and a bias of 0.36 mm d−1 against ETo. Differences between ETmaize or ETwheat and ETa against their average showed an acceptable agreement for the field with sdiff ± 0.6 mm d−1. For the crop fields at regional scale external causes associated to atmospheric and surface variations (i.e. land preparation) rather to the remote sensing algorithm made difficult to determine a percentage of error. Finally, ETa values were obtained at regional scale and it was demonstrated that using the remote sensing improve significantly the crop ET estimations computed in the area using traditional methods.  相似文献   

16.
A 2 years field study was conducted to develop crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.), a major irrigated crop in the Jordan Valley, under drip irrigation system with black plastic mulch. The area of the study field was 1.5 ha surrounded by many similar tomato fields. Actual crop evapotranspiration (ETC) was measured using eddy covariance technique which distinguishes this study from other previous studies conducted in the Jordan Valley that relied on the old indirect approach for ETC estimation based on the soil water balance.Grass reference evapotranspiration (ETO) was determined by using the FAO Penman–Monteith method utilizing the agrometeorological parameters measured at the study site. The crop coefficient (KC) was determined as the ratio of ETC to ETO. The tomato crop coefficients were determined following the FAO crop coefficient model. The average crop coefficient during the midseason growth stage (KC mid) was 0.82 which is far below the adjusted FAO crop coefficient of 1.19 by about 31%. Also, the late season crop coefficient (KC end) was much lower than the adjusted FAO crop coefficient of 0.76 by about 40%. Moreover, the weighted average crop coefficient over the entire growing season (KC GS) was 0.69, which is about 36% lower than the FAO corresponding value. In fact, the low KC values obtained reflect the effect of practicing both localized drip irrigation and plastic mulch covering. This study showed that there is a big difference between the reported FAO crop coefficients and the one measured in the filed using a precise approach. These exact updated values of crop coefficients will enhance future estimation of crop water requirements and hence irrigation management of tomato crop which is the major irrigated crop in the Jordan Valley.  相似文献   

17.
Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat–rice and three for wheat–cotton) in Sirsa district, India during the agricultural year 2001–02. The ecohydrological soil–water–atmosphere–plant (SWAP) model, including detailed crop simulations in combination with field observations, was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and biophysical variables such as dry matter or grain yields. The use of observed soil moisture and salinity profiles was found successful to determine indirectly the soil hydraulic parameters through inverse modelling.Considerable spatial variation in WP values was observed not only for different crops but also for the same crop. For instance, the WPET, expressed in terms of crop grain (or seed) yield per unit amount of evapotranspiration, varied from 1.22 to 1.56 kg m−3 for wheat among different farmer fields. The corresponding value for cotton varied from 0.09 to 0.31 kg m−3. This indicates a considerable variation and scope for improvements in water productivity. The average WPET (kg m−3) was 1.39 for wheat, 0.94 for rice and 0.23 for cotton, and corresponds to average values for the climatic and growing conditions in Northwest India. Including percolation in the analysis, i.e. crop grain (or seed) yield per unit amount of evapotranspiration plus percolation, resulted in average WPETQ (kg m−3) values of 1.04 for wheat, 0.84 for rice and 0.21 for cotton. Factors responsible for low WP include the relative high amount of evaporation into evapotranspiration especially for rice, and percolation from field irrigations. Improving agronomic practices such as aerobic rice cultivation and soil mulching will reduce this non-beneficial loss of water through evaporation, and subsequently will improve the WPET at field scale. For wheat, the simulated water and salt limited yields were 20–60% higher than measured yields, and suggest substantial nutrition, pest, disease and/or weed stresses. Improved crop management in terms of timely sowing, optimum nutrient supply, and better pest, disease and weed control for wheat will multiply its WPET by a factor of 1.5! Moreover, severe water stress was observed on cotton (relative transpiration < 0.65) during the kharif (summer) season, which resulted in 1.4–3.3 times lower water and salt limited yields compared with simulated potential yields. Benefits in terms of increased cotton yields and improved water productivity will be gained by ensuring irrigation supply at cotton fields, especially during the dry years.  相似文献   

18.
A methodology has been developed to quantify spatial variation of crop yield, evapotranspiration (ET) and water productivity (WPET) using the SEBAL algorithm and high and low resolution satellite images. SEBAL-based ET estimates were validated over an irrigated, wheat dominated area in the Yaqui Valley, Mexico and proved to be accurate (8.8% difference for 110 days). Estimated average wheat yields in Yaqui Valley of 5.5 t ha−1 were well within the range of measured yields reported in the literature. Measured wheat yields in 24 farmers’ fields in Sirsa district, India, were 0.4 t ha−1 higher than SEBAL estimated wheat yields. Area average WPET in the Yaqui Valley was 1.37 kg m−3 and could be considered to be high as compared to other irrigated systems around the world where the same methodology was applied. A higher average WPET was found in Egypt's Nile Delta (1.52 kg m−3), Kings County (CA), USA (1.44 kg m−3) and in Oldambt, The Netherlands (1.39 kg m−3). The spatial variability of WPET within low productivity systems (CV = 0.33) is higher than in high productivity systems (CV = 0.05) because water supply in the former case is uncertain and farming conditions are sub-optimal. The high CV found in areas with low WPET indicates that there is considerable scope for improvement. The average scope for improvement in eight systems was 14%, indicating that 14% ET reduction can be achieved while maintaining the same yield. It is concluded that the proposed methodology is accurate and that better knowledge of the spatial variation of WPET provides valuable information for achieving local water conservation practices in irrigated wheat.  相似文献   

19.
A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (KC) value, which is related to specific crop phenological development to improve transferability of the KC values. Development of KC can assist in predicting crop irrigation needs using meteorological data from weather stations. The objective of the research was conducted to determine growth-stage-specific KC and crop water use for maize (Zea Mays) and sorghum (Sorghum bicolor) at Texas AgriLife Research field in Uvalde, TX, USA from 2002 to 2008. Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA). A seventh lysimeter was established to measure reference grass ETO. Crop water requirements, KC determination, and comparison to existing FAO KC values were determined over a 3-year period for both maize and sorghum. Accumulated seasonal crop water use ranged between 441 and 641 mm for maize and between 491 and 533 mm for sorghum. The KC values determined during the growing seasons varied from 0.2 to 1.2 for maize and 0.2 to 1.0 for sorghum. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific KC helps in irrigation management and provides precise water applications for this region.  相似文献   

20.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号