首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two new guanidine alkaloids, batzelladines O (1) and P (2), were isolated from the deep-water marine sponge Monanchora pulchra. The structures of these metabolites were determined by NMR spectroscopy, mass spectrometry, and ECD. The isolated compounds exhibited cytotoxic activity in human prostate cancer cells PC3, PC3-DR, and 22Rv1 at low micromolar concentrations and inhibited colony formation and survival of the cancer cells. Batzelladines O (1) and P (2) induced apoptosis, which was detected by Western blotting as caspase-3 and PARP cleavage. Additionally, induction of pro-survival autophagy indicated as upregulation of LC3B-II and suppression of mTOR was observed in the treated cells. In line with this, the combination with autophagy inhibitor 3-methyladenine synergistically increased the cytotoxic activity of batzelladines O (1) and P (2). Both compounds were equally active in docetaxel-sensitive and docetaxel-resistant prostate cancer cells, despite exhibiting a slight p-glycoprotein substrate-like activity. In combination with docetaxel, an additive effect was observed. In conclusion, the isolated new guanidine alkaloids are promising drug candidates for the treatment of taxane-resistant prostate cancer.  相似文献   

4.
Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.  相似文献   

5.
6.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types of cancer and exhibits a devastating 5-year survival rate. The most recent procedure for the treatment of PDAC is a combination of several conventional chemotherapeutic agents, termed FOLFIRINOX, that includes irinotecan, leucovorin, oxaliplatin, and 5-fluorouracil (5-FU). However, ongoing treatment using these agents is challenging due to their severe side effects and limitations on the range of patients available for PDAC. Therefore, safer and more innovative anticancer agents must be developed. The anticarcinoma activity of matairesinol that can be extracted from seagrass has been reported in various types of cancer, including prostate, breast, cervical, and pancreatic cancer. However, the molecular mechanism of effective anticancer activity of matairesinol against pancreatic cancer remains unclear. In the present study, we confirmed the inhibition of cell proliferation and progression induced by matairesinol in representative human pancreatic cancer cell lines (MIA PaCa-2 and PANC-1). Additionally, matairesinol triggers apoptosis and causes mitochondrial impairment as evidenced by the depolarization of the mitochondrial membrane, disruption of calcium, and suppression of cell migration and related intracellular signaling pathways. Finally, matairesinol exerts a synergistic effect with 5-FU, a standard anticancer agent for PDAC. These results demonstrate the therapeutic potential of matairesinol in the treatment of PDAC.  相似文献   

7.
In this study, the anti-proliferative effect of ilimaquinone, a sesquiterpene derivative from the marine sponge, in breast cancer cells was investigated. Ilimaquinone inhibited the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 10.6 μM and 13.5 μM, respectively. Non-tumorigenic human breast epithelial cells were less sensitive to ilimaquinone than breast cancer cells. Flow cytometric and Western blot analysis showed that ilimaquinone induced S-phase arrest by modulating the expression of p-CDC-2 and p21. Ilimaquinone induces apoptosis, which is accompanied by multiple biological biomarkers, including the downregulation of Akt, ERK, and Bax, upregulation of p38, loss of mitochondrial membrane potential, increased reactive oxygen species generation, and induced autophagy. Collectively, these findings suggest that ilimaquinone causes cell cycle arrest as well as induces apoptosis and autophagy in breast cancer cells.  相似文献   

8.
Cancer cells grown in spheroid conditions interact with each other and the extracellular matrix, providing a better representation of the in vivo environment than two-dimensional cultures and are a more clinically relevant model. A discrete screening of genetically diverse marine samples in the spheroid assay led to the identification of a novel activity for the known compound furospinulosin 1. This compound shows activity against MDA-MB-231 triple negative breast cancer cells grown as spheroids and treated for 24 or 48 h. No cytotoxicity was seen in traditional two-dimensional adherent cultures treated for a longer time (72 h). A reverse phase protein array (RPPA) confirmed the limited activity of the compound in cells grown traditionally and revealed changes in protein expression when cells are grown as spheroids that are associated with better clinical prognosis. Analysis of the RPPA data through the Broad institute’s connectivity map suggested the hypothesis that furospinulosin 1 functions as an MEK inhibitor. Analysis of the RPPA data through STRING supports the apoptosis observed. The selectivity exhibited by furospinulosin 1 for triple negative breast cancer cells only when grown as spheroids makes it an interesting compound with strong therapeutic potential that merits further study.  相似文献   

9.
The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.  相似文献   

10.
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.  相似文献   

11.
12.
Pseudopterosin A (PsA) treatment of growth factor depleted human umbilical vein endothelial cell (HUVEC) cultures formulated in hydroxypropyl-β-cyclodextrin (HPβCD) for 42 h unexpectedly produced a 25% increase in cell proliferation (EC50 = 1.34 × 10−8 M). Analysis of dose response curves revealed pseudo-first order saturation kinetics, and the uncoupling of cytotoxicity from cell proliferation, thereby resulting in a widening of the therapeutic index. The formulation of PsA into HPβCD produced a 200-fold increase in potency over a DMSO formulation; we propose this could result from a constrained presentation of PsA to the receptor, which would limit non-specific binding. These results support the hypothesis that the non-specific receptor binding of PsA when formulated in DMSO has ostensibly masked prior estimates of specific activity, potency, and mechanism. Collectively, these results suggest that the formulation of PsA and compounds of similar chemical properties in HPβCD could result in significant pharmacological findings that may otherwise be obscured when using solvents such as DMSO.  相似文献   

13.
Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.  相似文献   

14.
Receptor tyrosine kinases are key regulators of cellular growth and proliferation. Dysregulations of receptor tyrosine kinases in cancer cells may promote tumorigenesis by multiple mechanisms including enhanced cell survival and inhibition of cell death. Araguspongines represent a group of macrocyclic oxaquinolizidine alkaloids isolated from the marine sponge Xestospongia species. This study evaluated the anticancer activity of the known oxaquinolizidine alkaloids araguspongines A, C, K and L, and xestospongin B against breast cancer cells. Araguspongine C inhibited the proliferation of multiple breast cancer cell lines in vitro in a dose-dependent manner. Interestingly, araguspongine C-induced autophagic cell death in HER2-overexpressing BT-474 breast cancer cells was characterized by vacuole formation and upregulation of autophagy markers including LC3A/B, Atg3, Atg7, and Atg16L. Araguspongine C-induced autophagy was associated with suppression of c-Met and HER2 receptor tyrosine kinase activation. Further in-silico docking studies and cell-free Z-LYTE assays indicated the potential of direct interaction between araguspongine C and the receptor tyrosine kinases c-Met and HER2 at their kinase domains. Remarkably, araguspongine C treatment resulted in the suppression of PI3K/Akt/mTOR signaling cascade in breast cancer cells undergoing autophagy. Induction of autophagic death in BT-474 cells was also associated with decreased levels of inositol 1,4,5-trisphosphate receptor upon treatment with effective concentration of araguspongine C. In conclusion, results of this study are the first to reveal the potential of araguspongine C as an inhibitor to receptor tyrosine kinases resulting in the induction of autophagic cell death in breast cancer cells.  相似文献   

15.
Angiogenesis, including the growth of new capillary blood vessels from existing ones and the malignant tumors cells formed vasculogenic mimicry, is quite important for the tumor metastasis. Anti-angiogenesis is one of the significant therapies in tumor treatment, while the clinical angiogenesis inhibitors usually exhibit endothelial cells dysfunction and drug resistance. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether (BTDE), a marine algae-derived bromophenol compound, has shown various biological activities, however, its anti-angiogenesis function remains unknown. The present study illustrated that BTDE had anti-angiogenesis effect in vitro through inhibiting human umbilical vein endothelial cells migration, invasion, tube formation, and the activity of matrix metalloproteinases 9 (MMP9), and in vivo BTDE also blocked intersegmental vessel formation in zebrafish embryos. Moreover, BTDE inhibited the migration, invasion, and vasculogenic mimicry formation of lung cancer cell A549. All these results indicated that BTDE could be used as a potential candidate in anti-angiogenesis for the treatment of cancer.  相似文献   

16.
Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE “modulator” capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.  相似文献   

17.
Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A’s (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA’s differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2–MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.  相似文献   

18.
Currently, periodontitis treatment relies on surgical operations, anti-inflammatory agents, or antibiotics. However, these treatments cause pain and side effects, resulting in a poor prognosis. Therefore, in this study, we evaluated the impact of the compound epiloliolide isolated from Sargassum horneri on the recovery of inflammatory inhibitors and loss of periodontal ligaments, which are essential treatment strategies for periodontitis. Here, human periodontal ligament cells stimulated with PG-LPS were treated with the compound epiloliolide, isolated from S. horneri. In the results of this study, epiloliolide proved the anti-inflammatory effect, cell proliferation capacity, and differentiation potential of periodontal ligament cells into osteoblasts, through the regulation of the PKA/CREB signaling pathway. Epiloliolide effectively increased the proliferation and migration of human periodontal ligament cells without cytotoxicity and suppressed the protein expression of proinflammatory mediators and cytokines, such as iNOS, COX-2, TNF-α, IL-6, and IL-1β, by downregulating NLRP3 activated by PG-LPS. Epiloliolide also upregulated the phosphorylation of PKA/CREB proteins, which play an important role in cell growth and proliferation. It was confirmed that the anti-inflammatory effect in PG-LPS-stimulated large cells was due to the regulation of PKA/CREB signaling. We suggest that epiloliolide could serve as a potential novel therapeutic agent for periodontitis by inhibiting inflammation and restoring the loss of periodontal tissue.  相似文献   

19.
Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号